Ortsspezifische Substitutionen an Heterometall-Clustern

Harald Bantel, Wolfgang Bernhardt, Anne K. Powell und Heinrich Vahrenkamp*

Institut für Anorganische und Analytische Chemie der Universität Freiburg, Albertstraße 21, D-7800 Freiburg

Eingegangen am 30. Dezember 1987

Es wurde das Substitutionsverhalten gegenüber Phosphanliganden von (µ3-2-Butin)FeCo2(CO)9 und von Clustern (µ3-X)Ru- $Co_2(CO)_2$ mit X = Alkin, Vinyliden, Schwefel und Phosphiniden untersucht. Im Falle des FeCo2-Clusters wurde ausschließlich Co-Substitution beobachtet. Bei den RuCo2-Clustern waren sowohl Co- als auch Ru-substituierte Produkte isolierbar, von denen durchweg das Co-substituierte kinetisch bevorzugt und das Rusubstituierte thermodynamisch bevorzugt ist. In mehreren Fällen war die thermisch induzierte Co-Ru-Wanderung des Phosphanliganden realisierbar; die Wanderungstendenz sinkt in der Reihenfolge PMe₃, PMe₂Ph, PMePh₂, PPh₃. Konkurrenzexperimente mit (µ3-2-Butin)FeCo₂(CO)₉, (µ3-2-Butin)RuCo₂(CO)₉ und PPh₃ ergaben eine höhere Substitutionslabilität des FeCo₂-Clusters und eine Phosphanübertragung vom FeCo2- auf den RuCo2-Cluster. Bei einigen der Phosphanreaktionen trat auch Disubstitution (an gleichen oder verschiedenen Metallatomen) ein. Kristallstrukturanalysen von $(\mu_3 - HC \equiv CMe)RuCo_2(CO)_8(PPh_3)$ -(P-Co) (9d), $(\mu_3-C=CHMe)RuCo_2(CO)_8(PMe_2Ph)(P-Ru)$ (19b), $(\mu_3-S)RuCo_2(CO)_8(PPh_3)(P-Co)$ (23d) und $(\mu_3-S)RuCo_2(CO)_8 (PMe_2Ph)(P-Ru)$ (24b) bestätigen die spektroskopischen Konstitutionszuordnungen. Insgesamt ergibt sich für die hier betrachteten Metalle in Clustern eine Substitutionsbereitschaft in der Reihenfolge Fe < Co < Ru.

Wenn sich die Reaktivität von Organometall-Clustern prinzipiell von derjenigen einkerniger Organometall-Komplexe unterscheiden soll, so kann dies nur auf der gleichzeitigen Reaktion an mehreren Metallatomen (Multimetall-Reaktivität) oder auf der spezifischen Reaktion mehrerer Substrate an verschiedenen Metallatomen (Heterometall-Reaktivität) beruhen. Für letzteres bieten sich die von uns bevorzugt untersuchten Heterometall-Cluster an. Bis in die jüngste Zeit sind jedoch kaum gezielte Untersuchungen zur Heterometall-Reaktivität an Clustern vorgenommen worden^{1,2)}, etwas mehr schon an Hetero-Zweikernkomplexen³⁻⁵⁾.

Selbst über das einfachste Studienobjekt, die ortsspezifische CO-Substitution in Clustern, gibt es bisher nur wenige Arbeiten^{1,2)}, von denen drei⁶⁻⁸⁾ auch mechanistische Aussagen machen. Wir wurden auf diese Thematik aufmerksam, als wir bei Substitutionen am Cluster (μ_3 -S)RuCo₂(CO)₉ isomere Produkte beobachteten⁹⁾. Substitutionsreaktionen am analogen Cluster (μ_3 -MeP)FeCo₂(CO)₉, die über Addition und Eliminierung mit intermediärer Cluster-Öffnung verlaufen⁷⁾, deuteten dann ebenfalls an, daß Phosphanliganden im Cluster von einem Metallatom zum anderen wandern können. Wir nahmen dies zum Anlaß zu einer vergleichenden Studie der Phosphansubstitution an einer Serie μ_3 -verbrückter Cluster mit FeCo₂- und RuCo₂-Gerüst. Als

Site Specific Substitutions at Mixed Metal Clusters

The phosphane substitution chemistry was investigated for $(\mu_3-2$ butyne)FeCo₂(CO)₉ and for the clusters $(\mu_3-X)RuCo_2(CO)_9$ with X = alkyne, vinylidene, sulfur, and phosphinidene. In the case of the FeCo₂ cluster Co-substitution was observed exclusively. For the RuCo₂ clusters Co- as well as Ru-substituted products were isolated, of which in all cases the Co-substituted one is kinetically favoured and the Ru-substituted one thermodynamically favoured. The thermally induced Co-Ru migration of the phosphane ligands could be realized in several cases; the migratory aptitude decreases in the sequence PMe₃, PMe₂Ph, PMePh₂, PPh₃. Competition experiments with $(\mu_3$ -2-butyne)FeCo₂(CO)₉, $(\mu_3-2-butyne)RuCo_2(CO)_9$ and PPh₃ demonstrated a higher substitutional lability of the FeCo₂ cluster and a phosphane transfer from the FeCo₂ to the RuCo₂ cluster. Some of the phosphane reactions led also to disubstitution (at the same or at different metal atoms). Crystal structure analyses of $(\mu_3$ -HC \equiv CMe)Ru- $Co_2(CO)_8(PPh_3)(P-Co)$ (9d), (μ_3 -C=CHMe)RuCo_2(CO)_8(PMe_2-Ph)(P - Ru) (19b), $(\mu_3 - S)RuCo_2(CO)_8(PPh_3)(P - Co)$ (23d), and $(\mu_3-S)RuCo_2(CO)_8(PMe_2Ph)(P-Ru)$ (24b) confirmed the constitutional assignments deduced from the spectra. Altogether the metals considered here show a tendency for substitution in the order Fe < Co < Ru.

deren Ergebnis erhofften wir eine Hierarchie der drei Metalle bezüglich ihrer Substitutionslabilität und Aussagen zur Mobilität der Phosphanliganden im Cluster.

Gegenstand der vergleichenden Betrachtung sollten die Systeme (μ_3 -X)FeCo₂(CO)₉ und (μ_3 -X)RuCo₂(CO)₉ mit den vier μ_3 -Liganden Alkin, Vinyliden, Schwefel und Phosphiniden sein. Von diesen ist die Substitutionschemie des SFeCo₂-⁶⁾ und des RPFeCo₂-Systems⁷⁾ schon beschrieben. Für das Vinyliden-FeCo₂-System ergab sich die ungewöhnliche Addition von Phosphanliganden am Vinyliden-Baustein^{1C)}. Zur Untersuchung verblieben damit der Alkin-FeCo₂-Cluster 1 und die vier Typen von RuCo₂-Clustern $2-5^{11}$.

Reaktionen

Der Cluster 1 zeigte das einfachste Substitutionsverhalten und reagierte dabei vollkommen analog wie sein SFeCo₂-Analogon⁶⁾. Alle vier angebotenen Phosphanliganden, PMe₃, PMe₂Ph, PMePh₂ und PPh₃, substituierten eine CO-Gruppe am Cobalt unter Bildung von 6a - d. Mit PMe₂Ph wurde auch Zweitsubstitution am zweiten Cobaltatom zu 7b beobachtet. Die Unterscheidung von Eisen und Cobalt geschieht damit eindeutig zugunsten des reaktiveren Cobalt-Bausteins, und thermische Umlagerung zu Eisen-substitu-

ierten Derivaten ist nicht möglich. Analoges wurde auch schon für andere Fe-Co-Cluster beobachtet^{12,13}. Die NMR-Vermessung der Komplexe 6 und 7 (s. unten) ergab ein erwähnenswertes Detail zur Struktur dieser Verbindungen. Während die schnelle Rotation des Alkinliganden in Clustern wie 1 bis herab zu ca. -100 °C nicht eingefroren werden kann, zeigen 6 und 7 durch breite NMR-Resonanzen für den Alkinliganden bei Raumtemperatur die deutliche Verlangsamung von dessen Rotation an.

Die vier alkinverbrückten RuCo₂-Cluster 2 zeigten ein sehr variantenreiches Substitutionsverhalten gegenüber den vier Phosphanliganden. Unter den entstehenden Monosubstitutionsprodukten waren sowohl solche, die den Liganden nur am Cobalt tragen können, wie solche, die ihn nur am Ruthenium tragen können, als auch solche, die beide Isomere (Co-L und Ru-L) zeigen. In zwei Fällen war dabei auch die thermische Umwandlung von der Co-L- in die Ru-L-Form realisierbar. Nur in der Co-L-Form fielen an 8d (aus 2a und PPh₃), 9d (aus 2b und PPh₃), 10d (aus 2c und PPh₃) und 11d (aus 2d und PPh₃). Nur in der Ru-L-Form fielen an 12b (aus 2a und PMe₂Ph), 13a und b (aus 2b und PMe₃ bzw. PMe₂Ph) und 15a und b (aus 2d und PMe₃ bzw. PMe₂Ph). In beiden Formen fielen an 8a/12a (aus 2a und PMe₃), 10b/14b (aus 2c und PMe₂Ph) sowie 11c/15c (aus 2d und PMePh₂). Hierbei trat 8a nur in spektroskopisch identifizierbaren Spuren neben 12a auf. 10b und 14b fielen bei normaler Reaktionsführung (ca. 5°C) in vergleichbaren Mengen an; reines 10b ging bei Raumtemperatur in Lösung in 3 Stunden quantitativ in 14b über. 11c und 15c, die chromatographisch in derselben Fraktion auftraten, konnten durch mechanische Auslese getrennt werden. Ihre thermische Umwandlung war ebenfalls nur in der Richtung $11c \rightarrow 15c$ möglich, sie verlangte jedoch eintägiges

Erhitzen in Lösung auf 60°C, was überwiegende Zersetzung zur Folge hatte.

Zur Abrundung der Beobachtungen bei den alkinverbrückten $RuCo_2$ -Clustern trugen drei Disubstitutionsprodukte bei: **16a** wurde durch Umsetzung von **12a** mit weiterem PMe₃ dargestellt, während **17b** und **c** neben den zugehörigen Monosubstitutionsprodukten **15b** bzw. **11c/15c** anfielen. Auf Grund der spektroskopischen Indizien (s. u.) ist hier wahrscheinlich je ein Ligand am Ruthenium und Cobalt gebunden.

Die bei diesen Umsetzungen beobachtete Wanderungstendenz des Phosphanliganden zeigte sich sehr typisch auch bei zwei $FeCo_2/RuCo_2$ -Konkurrenzexperimenten. Wurden die zwei μ_3 -Butin-verbrückten Cluster 1 und 2d mit PPh₃ im Molverhältnis 2:2:1 umgesetzt, so tauchte als erstes bemerkbares Reaktionsprodukt das von 1 abgeleitete 6d auf, das aber im Verlauf der Reaktion zugunsten des einzig verbleibenden 11d verschwand, das sich von 2d ableitet. Die daraus zu schließende Übertragung des Liganden von einem Cluster auf den anderen ließ sich dann leicht verifizieren: in Lösung bei Raumtemperatur ging 6d mit 2d langsam in 11d und 1 über.

Aus den Umsetzungen der μ_3 -Alkin-verbrückten RuCo₂-Cluster **2a** – c ergab sich eine nätürliche Beziehung zu denen der entsprechenden μ_3 -Vinyliden-verbrückten Cluster **3a** – c, da bei thermischer Belastung in diesen Systemen immer auch Alkin-Vinyliden-Umlagerung eintritt¹⁴. Dies war auch hier an den drei ausgewählten Vertretern **12a**, **13b** und **14b** der Fall, die beim Erhitzen in **18a**, **19b** und **20b** übergingen. Die Ausbeuten waren dabei allerdings ebenso mäßig wie bei den Umlagerungen der Ausgangsverbindungen **2** in **3**. Leichter waren **18a**, **19b** und **20b** durch Phosphansubstitution der Vinyliden-verbrückten Cluster **3a** – c zu erhalten. Auch

zwei disubstituierte Produkte, **21a** und **22b**, fielen bei diesen Reaktionen an, entweder bei den Umlagerungen $12a \rightarrow 18a$ bzw. **14b** \rightarrow **20b** aus Nebenreaktionen oder direkt durch Umsetzung von **18a** bzw. **20b** mit den entsprechenden Phosphanliganden.

Die eindeutigsten Aussagen bezüglich der Labilität und Stabilität der Cluster ergaben sich bei der Phosphansubstitution am SRuCo₂-Cluster 4. Bei Kühlung fielen mit allen vier Phosphanliganden als Primärprodukte die Co-substituierten Cluster 23a - d an. Von diesen gingen 23a - c beim Erwärmen in die Ru-substituierten Cluster 24a - c über, während 23d unverändert blieb. In einem Fall, mit PMe₂Ph, fiel auch das Disubstitutionsprodukt 25b an. Von diesen Produkten haben wir 23b, 24b und 25b schon beschrieben, aber mit falscher Konstitutionszuordnung⁹.

Phosphansubstitutionen am μ_3 -Phosphiniden-verbrückten Cluster **5** verliefen sehr unbefriedigend. Es wurden schwer trennbare Produktgemische erhalten, deren Spektren die Vermutung erlauben, daß ähnlich wie bei MePFe-Co₂(CO)₉⁷⁾ Addition mehrerer Liganden unter Clusteröffnung eintritt. Mit PPh₃ ließen sich daraus die mono- und disubstituierten Cluster **26d** und **27d** isolieren. Dabei stellt **26d** insofern eine Besonderheit dar, als es der einzige der hier isolierten PPh₃-substituierten Cluster mit Ru-gebundenem PPh₃-Liganden ist.

Spektren und Konstitution

Die Basis aller hier gemachten Konstitutionsaussagen sind die Kristallstrukturanalysen (s. u.). Über die Spektren der Substanzen ließ sich damit für die meisten der erhaltenen Produkte eine befriedigende Konstitutionsaussage gewinnen. Der Wert der IR-Daten lag dabei vorwiegend in ihrem Nutzen für Vergleiche und zum Hinweis auf vorhandene CO-Brücken (vgl. Anmerkung¹¹). Die ¹H-NMR-Spektren erhärteten die Konstitutionszuordnungen in der Regel durch Symmetrieaussagen. Die ³¹P-NMR-Spektren waren wertvoll dadurch, daß sie mit einer Ausnahme immer für Co-gebundenen Phosphor ein breites und für Ru-gebundenen Phosphor ein scharfes Signal zeigten. Tab. 1 und 2 fassen die spektroskopischen Ergebnisse zusammen.

Tab. 1. IR (C₆H₁₂, cm⁻¹) und ¹H-NMR-Daten (CDCl₃, int. TMS, ppm, Hz, ohne die Phenylresonanzen) der neuen Komplexe

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ν (CC))		_			δ /J (Zuordnung)
Gb 2000 st 2023s st 2015 st. 1983sch 1980m 2.30 (CMe) 1.73/9.6 (PMe) 1965m 1940s 2.00 (CMe) 1.63/9.2 (PMe) 2.00 (CMe) 1.63/9.2 (PMe) 1955s 2040st 2035st 2035st 2025st 2000st 1975m 1960m 1.88/8.2 (PMe) 1950m 1943s 1993s 2035st 2025t 2012m 1976m 2.25 (CHe) 1950m 1953s 1993s 1985s 1975s 2.05 (CHe) 1.85 (PMe) 84 2081m 2042st 2022st 2015sch 1992s 1978s 9.55 (CH), anderes CH unter C _g H ₅ 1968s 1865s 2008st 2020st 2018st 2008sch 1970s 1.92/9.6 (PMe ₂), CH unter C _g H ₅ 1970s 1204st 205sst 2020st 2015sch 1992s 1980s CH unter C _g H ₅ 1970s 1804ss 1002st 2050st 202st 2018st 2018st 1975s 1.92/9.6 (PMe ₂) 1.94/8.0 (PMe ₂) 19	6a	2078st 1968m	20345st	2023sst 1934<	2012Sch	19885	1978m	2.46 (C ₂ Me ₂) 1.39/9.2 (PMe ₃)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6b	2080st	2039sst	2025sst	2015Sch	1983Sch	1980m	2.30 (CMe) 1.73/9.6 (PMe)
GC 2080st 2025st 2000st 1975m 1960m 2.30 (CHe) 1.88/8.2 (PMe) 1900m 1943s 1.05 (CHe) 1.25 (CMe) 1.25 (CMe) 1900m 1943s 1.05 (CHe) 1.25 (CMe) 1.25 (CMe) 1950m 1953m 2005st 2015st 1995st 1975st 2.05 (C_2Me_2) 1.70/7.8 (PMe_2) 1802ss, br 2021m 2015sch 1992s 1978s 9.55 (CH), anderes CH unter C_4Ms 1802ss, br 2020sm 2043sst 2020st 2015sch 1992s 1978s 9.55 (CH), anderes CH unter C_4Ms 1965s 1867ss 1000sst 2015sch 1992s 1980s CH unter C_6Ms 1002 2079m 2040sst 2018sch 1992s 1980s CH unter C_6Ms 1070s 1870ss, br 1975s 1.92/9.6 (PMe_2), CH unter C_6Ms 1.85/10.0 (PMe) 1022 2078s 2020sst 2015sch 1997s 1860ss 9.67, 7.67 (CsH) 1.57/10.2 (PMe) 122 2075m 2025sst		1969m	1963m	1940s				2.00 (CHe) 1.63/9.2 (PNe)
1-90 (1-90 (1-90 (1-90) 04 2075st 2035st 2035st 2020st 2012m 1976m 2.25 (DHe) 1950m 1943s 1998st 1995st 2.05 (CHe) 1.85 (DHe) 1950m 1935m 1935m 2.05 (C_Me_2) 1.707.8 (PMe_2) 1958s 1955b 1935a 2.05 (CMe) 1.87 (CMe) 1.707.8 (PMe_2) 107 ss,br 2048st 202st 2015sch 1992s 1978s 9.55 (CH), anderes CH unter C ₀ H 1062s 2043st 2020st 2018st 2008st 1975s 1.92/9.6 (PMe_2). CH unter C ₀ H 1968s 1865s 1002 2063st 2018st 2018st 1990m 1975s 1.92/9.6 (PMe_2). CH unter C ₀ H 100 2080m 2050st 2028st 2018st 1990m 1975s 1.92/9.6 (PMe_2). CH unter C ₀ H 110 2085st 2050st 2027st 2028st 2018st 1979s 1860s 1.75.7 (CHe) 122 2078 2022st	6c	2080st	2040sst	2025st	2000st	1975m	1960m	2.30 (CHe) 1.88/8.2 (PHe)
6d 2078st 2035st 2020st 2017st 1.85 (DHe) 1950m 1935m 1935m 1935m 1935m 1935m 1950m 1935m 1935m 1935m 1935m 1935m 2080s 2045st 2022st 20105ch 1990st 1975s 2.05 (C_2He_2) 1.70/7.8 (PHe_2) 1955m 2043st 2022st 20155ch 1992s 1976s - 1.87.6 (PHe_2) 1905a 1605ss 100 2045st 2022st 2018sch 2008ch 1990m 1975s 1.92/9.6 (PHe_2). (PL unter C_8H_5 1905a 1870ss.br 1970s 1.92/9.6 (PHe_2). (PL unter C_8H_5 1970s 1.86/8.0 (PHe) 1805s.br 2015sch 1992s 1980s CH unter C_8H_5 1970s 1.86/8.0 (PHe) 1.95/10.2 (PHe) 120 2078s 2025st 2015sch 1997s 1860ss 0.67, 7.67 (C_8H) 1.61/11.2 (PHe) 122 2078s 2015sch 1980s 1975s 1860ss 7.27 (CH)		1935ss						1.90 (CHe)
$ \begin{array}{c} 1.85 \ (CMe) \\ 1.960m \ 19(3s \\ 1950m \ 1950m \ 1933m \\ 1960m \ 1950m \ 1933m \\ 1960m \ 1975st \ 2.05 \ (C_2Me_2) \ 1.70/7.8 \ (PMe_2) \\ 1975st \ 2.05 \ (C_2Me_2) \ 1.70/7.8 \ (PMe_2) \\ 1075st \ 2.05 \ (C_2Me_2) \ 1.70/7.8 \ (PMe_2) \\ 1075st \ 2.05 \ (C_2Me_2) \ 1.70/7.8 \ (PMe_2) \\ 1075st \ 2.020st \ 2022st \ 2015sch \ 1992s \ 1976s \\ 1062s \ 1870ss \\ 1062s \ 1870ss \ 2020st \ 2015sch \ 1992s \ 1976s \\ 1062s \ 1870ss \ 2020st \ 2015sch \ 1992s \ 1976s \\ 1062s \ 1870ss \ 2005st \ 2020st \ 2015sch \ 1992s \ 1980s \ CH unter \ C_{H_5} \\ 1062s \ 1870ss \ 1070s \ 1870ss \ 1070s \ 1075s \ 1.92/9.6 \ (PMe_2), \ CH unter \ C_{M_5} \\ 1070s \ 1870ss \ 1070s \ 1075s \ 1.92/9.6 \ (PMe_2), \ CH unter \ C_{M_5} \\ 1070s \ 1870ss \ 1020st \ 2020st \ 2015sch \ 1990m \ 1975s \ 1.92/9.6 \ (PMe_2), \ CH unter \ C_{M_5} \\ 1070s \ 1870ss \ 1070s \ 1075s \ 1060s \ 2.15 \ (CMe) \ 1.75 \ (CMe) \\ 1462s \ 1270s \ 2025st \ 2025st \ 2015sch \ 1997s \ 1960s \ 2.15 \ (CMe) \ 1.75 \ (CMe) \\ 1462s \ 2075s \ 2022sst \ 2015sch \ 1997s \ 1975s \ 1860ss \ 9.67, \ 7.67 \ (C_{N_2} \ 1.59/10.2 \ (PMe_2) \\ 13a \ 2068m \ 2025sst \ 2015sch \ 1997s \ 1960s \ 185ss \ 1.970 \ (CM) \ 1.91/10.2 \ (PMe_2) \\ 2.57 \ (CMe) \ 1.91/10.2 \ (PMe_2) \\ 2.52 \ (CMe) \ 1.90/10.2 \ (PMe_2) \\ 2.57 \ (CMe) \ 1.90/10.2 \ (PMe_2) \\ 2.57 \ (CMe) \ 1.90/10.2 \ (PMe_2) \\ 2.57 \ (CMe) \ 1.90/10.0 \ (PMe_2) \\ 2.57 \ ($	6d	2078st	2055m	2035sst	2020st	2012m	1976m	2.25 (CHe)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1960m	1943s	_				1.85 (CMe)
Tysem Tysem Tysem Tysem 195 2002 20105ch 1990n 1976s - 1878 55, br 2022 20105ch 1992s 1978s 9.55 (CN), anderes CH unter C ₆ H 1882 2082m 2043sst 2022st 2015ch 1992s 1978s 9.55 (CN), anderes CH unter C ₆ H 1968 1865s br 2002st 2015sch 1990n 1975s 1.92/9.6 (PHe_2), CH unter C ₆ H 1002 2085st 2020st 2015sch 1992s 1980s CH unter C ₆ H 186/8.0 (PHe) 1355s, br 11C 2085st 2020sst 2015sch 1990s 1975m 2.25 (C2He_2) 1.86/8.0 (PHe) 138 2028st 2015sch 1985s 1977s 1860ss, br 9.77 (CH) 1.67/10.2 (PHe_2) 122 2078 2025sst 2015sch 1985s 1860ss, br 6.77 7.67 (CH) 1.61/11.2 (PHe_2)	7b	2080s	2055st	2045s	1998sst	1985sst	1975st	2.05 (C2Me2) 1.70/7.8 (PMe2)
Ba 208 m 2002381 202281 20105ch 1990m 1976s - 1878 35, br Bd 2083m 20.85st 202281 20125ch 1992s 1978s 9.55 (CH), anderes CH unter C ₆ H 1882s5, br 9d 2082m 2043st 2020sst 20125ch 1990m 1977s 1.92/9.6 (PHe ₂), CH unter C ₆ H 1968s 1865ss 10b 2075m 2040sst 2018sst 20085ch 1990m 1975s 1.92/9.6 (PHe ₂), CH unter C ₆ H 1967s 1870s5, br 11c 2087st 2050sst 2029st 2015ch 1992s 1980s CH unter C ₆ H ₅ 1970s 1870s5, br 11c 2087st 2050sst 2029st 2015ch 1997s 1960s 2.15 (CHe) 1.75 (CHe) 1853, br 11c 2087st 2050sst 2027sst 1987m 1972s 1960s 2.15 (CHe) 1.75 (CHe) 1862s 122a 2078s 2022sst 20185ch 1985s 1979s 1860ss 9.67, 7.67 (C ₂ H ₂) 1.59/10.2 (PHe ₂) 13a 2068m 2025sst 2015ch 1980s 1982ss 1860ss, br 9.70 (CH) 1.01/10.2 (PHe ₂) 13b 2075m 2026sst 2015ch 1987m 1975s 1860s, br 9.70 (CH) 1.01/10.2 (PHe ₂) 13b 2075m 2026sst 2015ch 1986s 1975s 1860ss, br 6.75, 6.76 (CH) 1.90/9.0 (PHe ₂) 14b 2071m 2024sst 2010sch 1987m 1975m 1965sch 1845s 2.23 (C ₂ He ₂) 1.53/10.0 (PHe ₂) 14b 2071m 2024sst 2010sch 1987m 1975m 1965sch 1845s 2.26 (C ₂ He ₂) 1.63/10.0 (PHe ₂) 15c 2070st 2028st 2015sch 1986m 1975m 1965sch 1845s 2.23 (C ₂ He ₂) 1.63/10.0 (PHe ₂) 1662s 17b 2077st 2030sst 1985m 1975m 1965sch 1845m 2.28 (C ₂ He ₂) 1.53/10.0 (PHe ₂) 1642 2076st 2030sst 1985m 1975m 1965sch 1845m 2.28 (C ₂ He ₂) 1.53/10.0 (PHe ₂) 1642 17c 2050sst 2015st 1985m 1975m 1965sch 1845m 2.28 (C ₂ He ₂) 1.53/10.0 (PHe ₂) 17c 2050sst 2018st 1986m 1975m 1965sch 1845m 2.28 (C ₂ He ₂) 1.53/10.0 (PHe ₂) 17d 2024sst 2015sst 1980m 1965m 1970s 1952s 4.35, 4.28 (CH ₂) 1.64/10.0 (PHe ₂) 1642 2070m 2024sst 1985m 1975s 1950s 1.52/10.0 (PHe ₂) 2040st 2015st 2030st 1998st 1970s 1952s 4.35, 4.28 (CH ₂) 1.64/10.0 (PHe ₂) 1.66/71 (PHe ₂) 21a 2050s 2010st 1998st 1970s 1955sc 1.52/10.0 (PHe ₂) 23b 2085m 2051sst 2030st 2025st 1985s 1970s 1.772.1.0 (PHe ₂) 23b 2085m 2051sst 2030st 2025st 1985s 1970s 1.774.0 (PHe ₂) 23c 2092m 2050st 2025st 2025st 1980s 1970s 1.759/10.6 (PHe ₂) 23d 2002m 2050st 2025st 2025st 1980s 1970s 1.	n -	1958m	1950m	1955m	20400 h	4000-	1074 -	
	8a	2081m	2042sst	2022st	20105ch	1990m	19/65	-
Old Zubash	64	18/8 55	, br	2022-6	20150-6	1007.	1078-	0.55 (CH) anderer CH unter CH
$ \begin{array}{c} 100253, \ D^{-} \\ 2003 \ 2004 \ 2005 \ 2018$	ou	20630	2040591	202251	2013566	19962	17/05	7.55 (CR), anderes CR unter C65
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	64	100255,	20/3cct	2020000	20125ch	10880	1074 -	2 27 (CNe) CHumter C H
$ \begin{array}{c} 1000 \\ 1$	Ju	10480	1845.00	2020351	2012301	1700%	17743	Eler (dier, en dicer 6"5
$ \begin{array}{c} 1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2$	105	2079m	2040ee+	2018	20085ch	1990m	1975s	1.92/9.6 (PMe_), CH unter C H
10d 2005 2005 2015 2015 2015 2015 2015 2016 1992 1980 CH unter C_6H_5 1070s 1870s, b ⁻ 1070s 1870s, b ⁻ 11C 2085t 2050st 2029sst 2014 1990 1975 2.25 (C_2He_2) 1.86/8.0 (PHe) 1855s, b ⁻ 112 2085t 2050st 2027sst 1987 1975 1960s 2.15 (CHe) 1.75 (CHe) 1662 122 2078 2025st 2015ch 1980s 1975 1860ss 9.67, 7.67 (C_2H_2) 1.59/10.2 (PHe) 122 2078 2025st 2015ch 1980s 1975 1860ss p.67, 7.67 (C_2H_2) 1.59/10.2 (PHe) 132 2064m 2021st 2015ch 1980s 1975 1860ss p. 67, 6.76 (CH) 1.97/10.2 (PHe) 135 2075m 2025st 2015ch 1986s 1975 1860ss p. 6.75 (CHe) 1.97/10.2 (PHe) 14b 2071m 2025st 2015ch 1986s 1975 1860ss p. 6.75 (CHe) 1.97/10.2 (PHe) 155 2075t 2025st 2015ch 1986m 1975m 1965m 2.36 (CH) 1.90/9.0 (PHe) 155 2075t 2025st 2015sch 1986m 1975m 1965ch 1845m 2.36 (CH) 1.59/10.0 (PHe) 1650 1555 1985m 1988m 1975m 1965sch 1845m 2.28 (C_2He_2) 1.63/10.0 (PHe) 1642s 1982st 1982st 1985m 1975m 1965sch 1845m 2.28 (C_2He_2) 1.63/10.0 (PHe) 1642s 1094sst 1982st 1965m 1975s 1952s 4.35, 4.28 (C_2He_2) 1.63/10.0 (PHe) 1642s 2075st 2015st 1980m 1975m 1965sch 1845m 2.28 (C_2He_2) 1.57/10.0 (PHe) 1642s 1094sst 1982st 1975m 1945st 1950m 1.7-2.3/H (CHe und PHe) 1842s 2015st 2015st 1980m 1975st 1950m 1.7-2.3/H (CHe und PHe) 1842 2080m 2032sch 2035st 1990st 1970s 1952ss 4.35, 4.28 (CHe) 1.50·1.95/10.0 (PHe) 1.90/10.2 (PHe) 1.76, 1.76 (CHe) 1.90/9.2 (PHe) 1.90/10.0 (PHe) 2.21 2002st 2015st 1980m 1995s 1970s 1.552s 6.32, 6.22 (CH) 1.90/9.0 (PHe) 1.66/9.1 (PHe) 1.90/10.0 (PHe) 2.32 2000m 2065st 2035st 2035st 2035st 2035st 1990s 1975s - 1.66/9.1 (PHe) 1.62/10.0 (PHe) 2.32 2002m 2065st 2035st 2035st 1980m 1975s 1955s 6.32, 6.32 (CH) 1.90/9.2 (PHe) 1.66/9.1 (PHe) 1.62/10.0 (PHe) 2.32 2002m 2065st 2035st 2035st 2035st 1980s 1975s - 1.66/9.1 (PHe) 1.62/10.0 (PHe) 2.32 2002m 2065st 2035st 2035st 2035st 1980s 1975s - 1.66/9.1 (PHe) 2 2.34 2002m 2065st 2035st 2022st 1985s 1970s 1.52/10.0 (PHe) 2.352 2060m 2055st 2022m 1995m 1967s 1.50/10.6 (PHe) 2.34 2002m 2050st 2035st 2022st 1985s 1970s 1.50/10.6 (PHe) 2.34 2	100	19656	1870ss	2010351	2000301			
$ \begin{array}{c} 1970s \\ 1870s, br \\ 1055, br \\ 110c 2087st \\ 2008st \\ 2028st \\ 2050sst \\ 2025st \\ 2050sst \\ 2025st \\ 2025st \\ 2018sch \\ 1982s \\ 2028st \\ 2025st \\ 2018sch \\ 1982s \\ 2028st \\ 2018sch \\ 1982s \\ 2008s \\ 2021sst \\ 2018sch \\ 1982s \\ 2018sch \\ 1982s \\ 2008s \\ 2021sst \\ 2018sch \\ 1982s \\ 2018sch \\ 1982s \\ 1980s \\ 1975s \\ 1860ss, br \\ 6.75 (CHe) \\ 1.75 (C$	10d	2080m	2045sst	2020st	2015Sch	1992s	1980s	CH unter C,H,
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1970s	1870ss.k	br				6.5
$ \begin{array}{c} 1855s, br\\ 1102 2085st 2050st 2025st 2027sst 1987m 1972s 1960s 2.15 (CHe) 1.75 (CHe)\\ 1862s\\ 122 2073m 2025sst 2015sch 1980s 1979s 1860ss 9.67, 7.67 (C_{H_2}) 1.59/10.2 (PHe_2)\\ 12b 2073m 2025sst 2015sch 1980s 1975s 1860ss, br 9.70 (CH) 1.91/10.2 (PHe_2)\\ 13a 206dm 2021sst 2010sch 1987m 1976s 1863ss 7.25, 7.05 (CHe) 1.61/11.2 (PHe_2)\\ 13b 2075m 2026sst 2015sch 1980s 1975s 1860ss, br 6.95, 6.76 (CH) 1.90/9.0 (PHe_2)\\ 2.52 (CHe)\\ 14b 2071m 2024sst 2010sch 1987m 1975s 1860ss 1.97.55 (CHe), CH unter C_{H_2}\\ 14550n\\ 1550n\\ 1560n\\ 1550n\\ 1560n\\ 1550n\\ 1560n\\ 1550n\\ 1560n\\ 1$	11c	2087st	2050sst	2029sst	2014m	1990m	1975m	2.25 (C,He,) 1.86/8.0 (PHe)
11d 2085st 2050sst 2027sst 1987s 1972s 1960s 2.15 CFC 1.75 CFC 1202 2075s 2025sst 2018sch 1990s 1982ss 1860ss 9.67, 7.67 (C_p_1_) 1.59/10.2 (PF 12b 2075s 2025sst 2018sch 1990s 1982ss 1860ss, br 9.70 (CH) 1.91/10.2 (PMe_2) 13a 2068s 2015sch 1980s 1975s 1860ss, br 9.70 (CH) 1.91/10.2 (PMe_2) 13b 2075s 2026sst 2015sch 1986s 1975s 1860ss, br 6.95, 6.76 (CH) 1.90/9.0 (PMe_2) 14b 2071s 2026sst 2010sch 1987s 1985s 1.91/10.8 (PMe_2) 2.52 (CHe_2) 155 2075st 2030sst 1985s 1997sh 1965sch 1845s 2.28 (C_Me_2) 1.93/10.0 (PMe_2) 1642s 2070st 2030sst 1985s <td< td=""><td></td><td>1855s,br</td><td></td><td></td><td></td><td></td><td></td><td>2 2</td></td<>		1855s,br						2 2
1662s 122 2078s 2022sst 2018sch 1985s 1979s 1860ss 9.67, 7.67 (C ₂ N ₂) 1.59/10.2 (PMe ₂) 13a 2026m 2021sst 2015sch 1990s 1982ss 1860ss, br 9.70 (CH) 1.91/10.2 (PMe ₂) 13a 2068m 2021sst 2010sch 1987m 1976s 1863ss 7.23, 7.05 (CH) 1.61/11.2 (PMe ₂) 13b 2075m 2026sst 2015sch 1980s 1975s 1860ss, br 6.95, 6.76 (CH) 1.90/9.0 (PMe ₂) 14b 2071m 2026sst 2010m 1991s 1980s 1955ss 1.01/10.8 (PMe ₂), CH unter C ₁ N ₂ 15b 2070st 2030st 1985m 1975m 1965sc 2.23 (C ₂ Me ₂) 1.63/10.0 (PMe ₂) 15b 2070st 2030st 1985m 1975m 1965sc 1.28 (C ₂ Me ₂) 1.93/10.0 (PMe ₂) 15c 2070st 2030st 1985m 1975m 1965sc 1.23 (C ₁ Me ₂) 1.50/10.0 (PMe ₂) 1642 753 (CH) 1.93/10.0 (PMe	11d	2085st	2050sst	2027sst	1987m	19725	1960 s	2.15 (CHe) 1.75 (CHe)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1862s						
12b 2075m 2025sst 2015st 1990s 1982ss 1860ss, br 9.70 (1/k) 1.91/10.2 (PMe_3) 13a 2068m 2021sst 2010sch 1987m 1976s 1863ss 7.23, 7.05 (1/k) 1.61/11.2 (PMe_3) 13b 2075m 2026sst 2015sch 1986s 1975s 1860ss, br 6.95, 6.76 (CH) 1.90/9.0 (PMe_2) 14b 2071m 2026sst 2010m 1991s 1980s 1855ss 1.91/10.8 (PMe_2), CH unter C_MS 15b 2070st 2030sst 1985m 1975m 1965sch 1845m 2.28 (C_Me_2) 1.93/10.0 (PMe_2) 15c 2070st 2030sst 1985m 1975m 1965sch 1845m 2.28 (C_Me_2) 1.93/10.0 (PMe_2) 16a 2050sch 2045st 1985m 1975m 1965sch 1847s 2.28 (CMe_1) 1.97/10.0 (PMe_2) 206bst 2015sst 1980m	12a	2078s	2022sst	2018Sch	1985s	1979s	1860ss	9.67, 7.67 (C,H,) 1.59/10.2 (PHe,
13a 2068m 2021sst 2010sch 1987m 1976s 1863s 7.23, 7.05 (CR) 1.61/11.2 (PRe_ 2.57 (CRe) 13b 2075m 2026sst 2015sch 1986s 1975s 1860ss, br. 6.95, 6.76 (CH) 1.90/9.0 (PRe_2) 14b 2071m 2026sst 2015sch 1986s 1975s 1860ss, br. 6.95, 6.76 (CH) 1.90/9.0 (PRe_2) 15b 2070st 2028sst 2015sch 1984m 1973m 1965m 2.36 (C_2Me_2) 1.63/10.0 (PMe_2) 15b 2077st 2030sst 1985m 1975m 1965sch 1645m 2.28 (C_Me_2) 1.93/10.0 (PMe_2) 15b 2070st 2030sst 1985m 1975m 1965sch 8.68 (CD) 1.50/1.0 (PMe_3) 1642	12b	2075m	2025sst	2015Sch	19905	1982ss	1860ss,br	9.70 (CH) 1.91/10.2 (PMe ₂)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13a	20 68 m	2021sst	2010Sch	1987m	1976s	1863ss	7.23, 7.05 (CH) 1.61/11.2 (PMe ₃) 2.57 (CMe)
14b 2071m 2024sst 2010m 1991s 1980s 1855ss 1.91/10.8 (PMe_2), CH unter C, Mg 15a 2070st 2028st 2015sch 1980m 1975m 1965m 2.36 (C_2Me_2) 1.63/10.0 (PMe_3) 15b 2070st 2030st 1985m 1975m 1965m 2.28 (C_Me_2) 1.93/10.0 (PMe_3) 15b 2070st 2030st 1986m 1975m 1965sch 1845s 2.28 (C_Me_2) 1.93/10.0 (PMe_3) 1642s 1986st 1987st 1986st 1987st 1860rs 2.23 (C_Me_2) 1.5/10.0 (PMe_3) 17b 2048st 2015sst 1980m 1975st 1950m 1.7-2.3/M (CMc und PMe) 18a 2080m 2032sch 2030sst 1990st 1970s 1952ss 4.35, 4.28 (CM_2) 1.66/10.0 (PMe_2) 17C 2020sst 202sst 2008m 1990st 1970s 1952ss 4.35, 4.28 (CM_2) 1.66/10.0 (PMe_2) 172 202sst 202sst 2008m 1990st 1970s <t< td=""><td>13b</td><td>2075m</td><td>2026sst</td><td>2015\$ch</td><td>1986s</td><td>1975s</td><td>1860ss,br</td><td>6.95, 6.76 (CH) 1.90/9.0 (PMe₂) 2.52 (CMe)</td></t<>	13b	2075m	2026sst	2015\$ch	1 986 s	1975s	1 86 0ss,br	6.95, 6.76 (CH) 1.90/9.0 (PMe ₂) 2.52 (CMe)
$ 15a 2070st 2028sst 2015sch 1984m 1973m 1965m 2.36 (c_2He_2) 1.63/10.0 (PHe_3)^{-1} 1850m 1850m 2010sst 1985m 1975m 1965sch 1845m 2.28 (c_2He_2) 1.63/10.0 (PHe_2) 15c 2070st 2030sst 1988m 1976m 1845s 2.28 (c_2He_2) 1.93/10.0 (PHe_2) 1842s 2005sch 2045s 1994sst 1982st 1969m 1947sch 8.68 (CB) 1.54/10.0 (PHe_2) 1842s 2005sch 2045s 1980m 1975st 1950m 1970s 1865s 2.28 (CHe 1.50.1.95/10.0 (PHe_2) 2048st 2015sst 1980m 1975st 1950m 1.7-2.3/M (CHe und PMe) 188a 2080m 2032sch 2030sst 1999st 1970s 1952s 4.35, 4.28 (CHe) 1.50/1.0 (PHe_2) 2070m 2024sst 1996m 1986ss 1969s 1946ss 4.35, 4.28 (CHe) 1.93/10.0 (PHe_2) 2070m 2024sst 1990m 1980ss 1969s 1945ss 6.32, 6.22 (CH) 1.90/10.0 (PHe 19b 2070m 2024sst 1990sm 1990ss 1970s 1955s 6.32, 6.22 (CH) 1.90/10.0 (PHe 20 2074m 2022sst 2008m 1990ss 1970s 1955s 6.32, 6.22 (CH) 1.90/10.0 (PHe 21 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CHe) 1.64/9.1 (PHe_2) 2.36 2000st 2030st 2035st 2025st 1975s 1955s 1.52/10.0 (PHe) 1.64/9.1 (PHe_2) 2.32 2000m 2059st 2033st 2025st 1975s 1955s 1.52/10.0 (PHe) 2.32 2092m 2059st 2033st 2025st 1975s 1965s 1.52/10.0 (PHe) 2.32 2092m 2059st 2033st 2025st 1990s 1975s 1.52/10.0 (PHe) 2.32 2002m 2059st 2033st 2025st 1990s 1975s 1.52/10.0 (PHe) 2.34 2000m 2045st 2023st 2025st 1970s 1.75/s 1.09/9.2 (PHe) 2.34 2002m 2059st 2033st 2025st 1990s 1975s 1.52/10.0 (PHe) 2.34 2002m 2050st 2022st 2025st 1990s 1975s 1.52/10.0 (PHe) 2.34 2002m 2050st 2022st 2025st 1990s 1975s 1.50/10.6 (PHe_2) 2.34 2050m 2045st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2050st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2050m 2055st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2055st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2055st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2055st 2022m 1990m 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2055st 2022m 19975h 1970s 1865s 1.59/10.6 (PHe_2) 2.34 2020m 2055st 2022m 19975h 1970s 1865s 1.59/10.6 (PHe_2) 2.355bch 775m 1955bch 1.50/10.0 (PHe) 2.355bch 775m 1955bch 1.50/10.0 (PHe) 2.355bch 775m 1955b$	14b	2071m	2024sst	2010m	1991s	1980s	1855ss	1.91/10.8 (PMe ₃), CH unter C ₂ H ₅
1450m 1450m 15b 207st 2030st 1985m 1975m 1965sch 1845m 2.28 (C, Me,) 1.9710.0 (PHe,) 15c 207ost 2030st 1985m 1975m 1965sch 1845m 2.28 (C, Me,) 1.21710.0 (PHe,) 16a 2050sch 2045s 1994sst 1987m 1947sch 8.68 (CM,) 1.54/10.4 (PHe,) 17b 2046st 2015sst 1980m 1965m 1944r 1807s 2.28 (CHe) 1.01.95/H (PHe,) 17c 2050st 2015sst 1980m 1975st 1950m 1.7-2.3/H (CM und PMe) 18a 2080m 2022stst 2030st 1990ss 1970ss 1952ss 4.35, 4.28 (CHe) 1.64/10.0 (PHe) 19b 2070m 2024sst 1990ss 1970ss 1955ss 6.32, 6.22 (CHe) 1.09/10.0 (PHe) 21a 2050s 2010st 1998sst 1980m 1977s 1.95/ss 1.64/10.0 (PHe) 21a 205s 2010st 1998sst 1980m<	15a	2070st	2028sst	2015Sch	1984m	1973m	1965m	2.36 (C,Me,) 1.63/10.0 (PMe,)
15b 2077st 2050sst 1985m 1975m 1965Sch 1845s 2.28 CC, μe ₂) 1.93/1.0. (PMe ₂) 15c 2070st 2030st 1988m 1975m 1965Sch 1845s 2.23 (C, μe ₂) 1.51/1.0. (PMe ₂) 16a 2050sch 2045st 1994sst 1967m 1947sch 8.66 (Chi) 1.54/10.0 (PMe ₂) 17b 2048st 2015sst 1980m 1965m 194/m 1807s 2.28 (CHe ₂) 1.64/10.0 (PMe ₂) 17C 2050st 2015sst 1980m 1975st 1950m 1.7-2.3/M (CHe und PMe ₂) 18a 2080m 2024st 1990st 1970ss 1952ss 4.35, 4.28 (CHe ₂) 1.64/10.0 (PMe ₂) 19b 2074m 2024sst 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/10.0 (PMe ₂) 20b 2074m 2022sst 2035st 1997ss 1955ss 6.32, 6.22		1850m						
15c 2070st 2030st 1988s 1978m 1845s 2.23 (C, H ₂) 2.15/10.0 (PMe) 16a 2050sch 2045s 1994sst 1982st 1969m 1947sch 8.68 (Ch) 1.54/10.4 (PMe ₂) 17b 2048st 2015sst 1980m 1965m 1944m 1807s 2.23 (C, H ₂) 2.15/10.0 (PMe ₃) 17b 2048st 2015sst 1980m 1965m 1944m 1807s 2.28 (CHP) 1.50·1.95/14 (PMe ₂) 200 (CHP) 2024sst 1996m 1975st 1970s 1952ss 4.35, 4.28 (CH ₂) 1.64/10.0 (PMe) 19b 2070m 2024sst 1996m 1966ss 4.60/M (CH) 1.99/9.6 (PMe) 20b 2074m 2022sst 2008m 1990ss 1970s 1955ss 6.32, 6.22 (CH) 1.66/9(1.00 (PMe) 21a 2050s 2010st 1998st 1970s 1955ss 6.32, 6.22 (CH) 1.66/9(1.0 (PMe ₂) 23b 2050s 201st 1998st 1975s 1965sc 1475ss 1.46/9(1.0 (PMe ₂) 23b 2050st 2030st 203tst	15b	2077st	2030sst	1985m	1975m	1965Sch	1845m	2.28 (C2He2) 1.93/10.0 (PHe2)
16a 20505ch 2045s 1994sst 1986m 1947sch 8.68 C(H) 1.54/10.4 (PMeg) 17b 2048st 2015sst 1980m 1965m 1944m 1807s 2.28 C(Me) 1.54/10.4 (PMeg) 17c 2068st 2015sst 1980m 1975st 1950m 1.7-2.3/M C(Me und PMe) 18a 2080m 2032sch 2030sst 1995st 1970m 1972st 4.35, 4.28 C(H ₂) 1.64/10.0 (PMeg) 2070m 2024sst 1996m 1970st 1952ss 4.35, 4.28 C(H ₂) 1.64/10.0 (PMe 201 2070m 2024sst 1996m 1970ss 1952ss 4.35, 4.28 C(H ₂) 1.64/10.0 (PMe 201 2074m 2022sst 2008m 1990ss 1970ss 1955ss 6.32, 6.22 C(M ₂) 1.99/10.0 (PMe 21a 205s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CH) 1.62/10.0 (15c	2070st	2030sst	1988m	1978m	1845s		2.23 (C2Ne2) 2.15/10.0 (PMe)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16a	2050Sch	2045s	1994sst	1982st	1969m	1947Sch	8.68 (CH) 1.54/10.4 (PMe3)
17b 2048st 2015sst 1980m 1965m 1944m 1807s 2.28 Ctells 1.5.0°1.5.9°M (PHe2) 17C 2050sst 2018sst 1986m 1975st 1950m 1.7°2.3/M (CHe2) 18a 2080m 2022sch 2030sst 1996st 1970s 1952ss 4.35, 4.28 (CH) 1.6/1.00 (PHe2) 19b 2070m 2024sst 1996m 1986ss 1966ss 4.60/M (CH) 1.99/9.6 (PHe2) 20b 2074m 2022sst 2008m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/9.2 (PHe) 21a 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CH) 1.66/9.1 (PHe2) 23a 206ss 2030sst 2030st 2030st 2030st 2030st 1965sc 1.52/10.0 (PHe2) 23b 208st 2030st 203st 203st 203st 203st 203st 203st <td></td> <td>1842s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.53 (CH) 1.39/8.0 (PHe3)</td>		1842s						7.53 (CH) 1.39/8.0 (PHe3)
17c 2050sst 2018sst 1986m 1975st 1950m 1.7-2.3/M (CMe und PMe) 18a 2080m 2032sch 2030sst 1990st 1970s 1952ss 4.35, 4.28 (CH,) 1.6/(10.0 (PMe)) 19b 2070m 2024sst 1990sm 1965ss 1966ss 1966ss 4.35, 4.28 (CH,) 1.6/(10.0 (PMe)) 20b 2070m 2024sst 1990sm 1970ss 1955ss 6.32, 6.22 (CH) 1.997/0.0 (PMe) 20b 2074m 2022sst 2000m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.997/0.0 (PMe) 21a 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CM) 1.66//9.1 (PMe_2) 23b 2085st 2030st 2030st 2030st 1955ss 1.52/10.0 (PMe) 23b 2085st 2030st 2030st 2030st 1975s 1.46/9.1 (PMe_2) 23d 2092m 2059st 2030st 2030st 2030st 203st 1.59/10.0 (PMe) 23d	17Б	2048st	2015sst	1980m	1965m	1944m	1807s	2.28 (CMe) 1.50·1.95/M (PMe ₂) 2.00 (CMe)
18a 2080m 2032sch 2030sst 1999st 1970s 1952ss 4.35, 4.28 (CH2) 1.64/10.0 (PHe) 19b 2070m 2024sst 1996m 1986ss 1969ss 1965ss 4.35, 4.28 (CH2) 1.64/10.0 (PHe) 20b 2074m 2022sst 2000m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/9.6 (PHe) 20b 2074m 2022sst 2000m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/9.2 (PHe) 21a 2050s 2010st 1998sst 1980m 1977m 4.17, 3.91 (CH) 1.62/10.0 (PHe) 22b 202s2 2000sst 1981m 1975m 1965sch 195ss CH unter Cptc, 1.80/M (PHe2) 23a 2090m 2051sst 203sst 202st 1985s 1970s 1.78/10.0 (PHe2) 23b 2085m 2051sst 203sst 202st 1975s 1.29/10.0 (PHe2) 23d 2092m 204st 203sst 202st 1975s 1.78/10.0 (PHe2) <td>17c</td> <td>2050sst</td> <td>2018sst</td> <td>1986m</td> <td>1975st</td> <td>1950m</td> <td></td> <td>1.7-2.3/H (CHe und PHe)</td>	17c	2050sst	2018sst	1986m	1975st	1950m		1.7-2.3/H (CHe und PHe)
19D 2070m 2024sst 1996m 1966ss 1966ss 1946ss 4.60/H (CH) 1. ⁵ /9/9.6 (PHe) 20b 2074m 2022sst 2008m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/10.0 (PHe) 21a 2050s 2010st 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/10.0 (PHe) 21a 2050s 2010st 1998ss 1980m 1972m 4.17, 3.91 (CH) 1.62/10.0 (PHe) 22b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C Ms_1 1.66/9.1 (PHe_2) 23b 2085m 203sst 202st 1975s 1.75/10.0 (PHe) 1.46/9.1 (PHe_2) 23b 2085m 203sst 202sst 1990s 1975s 1.52/10.0 (PHe) 23c 2092m 206sst 203sst 202sst 1990s 1.75's 195's 1.76/10.0 (PHe) 23d 2092m 206sst 202sst 1990s 197's 1.66/s 1.59/10.6 (PHe_3) <t< td=""><td>18a</td><td>2080m</td><td>2032Sch</td><td>2030sst</td><td>1999st</td><td>1970s</td><td>1952ss</td><td>4.35, 4.28 (CH_) 1.64/10.0 (PMe_)</td></t<>	18a	2080m	2032Sch	2030sst	1999st	1970s	1952ss	4.35, 4.28 (CH_) 1.64/10.0 (PMe_)
20b 2074m 2022sst 2008m 1990ss 1970ss 1955ss 1.78, 1.76 (CMe) 1.93/10.0 (PMe) 21a 2050s 2010st 1990ss 1970ss 1955ss 6.32, 6.22 (CM) 1.99/2.2 (PMe) 21a 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CH) 1.62/10.0 (PMe) 22b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C.M.g. 1.46/9.1 (PMe_2) 23b 2085m 2051sst 203cst 2022sst 1970s 1.78/10.0 (PMe) 23d 2092m 2059st 203sst 202sst 1970s 1.78/10.0 (PMe_2) 23d 2092m 2059st 203sst 202st 1970s 1.78/10.0 (PMe_2) 23d 2092m 2045sst 203sst 202st 1990s 1974s 1.99/9.2 (PMe) 23d 2092m 2045sst 202sm 1995m 1970s 1865s 1.59/10.2 (PMe_3) 24b 2090m 2045sst 202em 1997sch 197	19b	2070m	2024sst	1996m	1986ss	1969ss	1946ss	4.60/M (CH) 1.99/9.6 (PMe)
20b 2074m 2022sst 2008m 1990ss 1970ss 1955ss 6.32, 6.22 (CH) 1.99/9.2 (PHe) 21a 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CH) 1.62/10.0 (PHe) 21b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C _k t _c . 1.66/9.1 (PHe ₃) 22b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C _k t _c . 1.80/M (PHe ₂) 23a 2090m 2051sst 203sst 202st 1985s 1970s 1.78/10.0 (PHe) 23b 2085m 2051sst 203sst 202sst 1970s 1.52/10.0 (PHe ₂) 23c 2092m 2059st 203sst 202sst 1.78/10.0 (PHe ₂) 23d 2092m 2059st 203sst 202sst 1970s 1.65/st 1.59/10.6 (PHe ₃) 23d 2092m 2045sst 202sm 1975m 1975s 1.59/10.2 (PHe) 2.21 23d 2092m 2045sst <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.78, 1.76 (CMe) 1.93/10.0 (PMe)</td></td<>								1.78, 1.76 (CMe) 1.93/10.0 (PMe)
21a 2050s 2010st 1998sst 1980m 1972m 4.17, 3.91 (CH) 1.62/10.0 (PHe_3) 22b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C, Mag. 1.80/M (PHe_2) 23b 2090m 2066sst 2035st 2025st 1975s 1965sch 152/10.0 (PHe_3) 23b 2092m 2059st 2035st 2025st 1975s 1.52/10.0 (PHe_3) 23c 2092m 2059st 2035st 2025st 1997ss 1.78/10.0 (PHe_3) 23d 2092m 2059st 2035st 2025st 1990ss 1977s 1.89/9 (PHe) 23d 2092m 2045st 2022m 1995m 1967s 1.65/st 1.59/10.2 (PHe) 24b 2090m 2045st 2022m 1997sh 1965s 1.55/10.2 (PHe_3) 24b 2060m 205st 2022mt 1997sh 1970s 1865ss 1.51/10.0 (PHe_3) 24b 2060m 205st 2022mt 1997sh 1975s 1.80/	20Ь	2074m	2022sst	2008m	1 99 0ss	1970ss	1955ss	6.32, 6.22 (CH) 1.99/9.2 (PMe) 1.96/10.0 (PMe)
22b 2042s 2000sst 1981m 1975m 1965sch 1945ss CH unter C_Hs_1 1.80/M (PHe_2)^2 23a 2000m 2066sst 2035st 2025st 1975s 1965sch 1.52/10.0 (PHe_3) 23b 2085m 2031st 2031st 2025st 1975s 1.72/10.0 (PHe_3) 23c 2082m 2059st 2031st 2025st 1970s 1.72/10.0 (PHe_2) 23c 2082m 2059st 2031st 2025st 1990ss 1977s - 23d 2092m 2060st 2033st 2028st 1990s 1977s - - 24a 2092m 2045st 2022m 1999m 1970s 1865s 1.85/10.2 (PHe_3) 24b 2090m 2050st 2028m 1997sth 1970s 1865s 2.57/10.0 (PHe_3) 24b 2090m 2050st 2028m 1997sth 1970s 1865s 2.57/10.0 (PHe_2) 25b 2060m 2051st 2022st 2025st <td>21a</td> <td>2050s</td> <td>2010st</td> <td>1998sst</td> <td>1980m</td> <td>1972m</td> <td></td> <td>4.17, 3.91 (CH) 1.62/10.0 (PMe₃) 1.46/9.1 (PMe₃)</td>	21a	2050s	2010st	1998sst	1980m	1972m		4.17, 3.91 (CH) 1.62/10.0 (PMe ₃) 1.46/9.1 (PMe ₃)
23a 2090m 2066sst 2035st 2025st 1975s 1965s 1.52/10.0 (PPe_3) 23b 2085m 2051sst 2030st 2020st 1985s 1970s 1.78/10.0 (PPe_3) 23c 2092m 2059sst 2033sst 2025sst 1990ss 1974s 1.99/9.2 (PPe) 23d 2092m 2060sst 2033sst 2028sst 1990ss 1975s 1.99/9.2 (PPe) 23d 2092m 2045sst 202an 1995m 1667s 1865s 1.59/10.6 (PMe_3) 24a 2090m 2045sst 202an 1999m 1970s 1865s 1.51/10.2 (PMe_2) 24b 2085m 2025m 202an 1997sch 1970s 1865ss 1.51/10.2 (PMe_2) 24C 2090m 205sst 202bsst 202bsst 202bsst 1987sch 1975s 1.80/9.8, 1.70/9.0 (PMe_2) 25b 2060m 205sst 202bsst 1988st 1	22Ь	2042s	2000sst	1981m	1975m	1965Sch	1945ss	CH unter C _z H _c , 1.80/H (PHe ₃)
23b 2085m 2051sst 2030st 2020st 1985s 1970s 1.78/10.0 (PMe, ²) 23c 2092m 2059sst 2033sst 2028sst 1990ss 1974s 1.99/9.2 (PMe) ² 23d 2092m 2045sst 2033sst 2028sst 1990ss 1975s - 24a 2090m 2045sst 2022m 1995m 1967s 1865s 1.59/10.6 (PMe ₂) 24b 2085m 205sst 2020m 1970s 1865s 1.59/10.2 (PMe ₂) 24b 2085m 205sst 2020m 1970s 1865s 1.59/10.2 (PMe ₂) 24c 2090m 205sst 2022m 1970s 1865s 1.80/10.2 (PMe ₂) 25b 2060m 205sm 2025st 1978sh 1955sch 1.80/9.8 1.70/9.0 (PMe ₂) 26d 2070st 2015st 2022sst 2005m 1998st 1985s - 1974ss 1943s <td< td=""><td>23a</td><td>2090m</td><td>2066sst</td><td>2035st</td><td>2025 s t</td><td>1975s</td><td>1965s</td><td>1,52/10.0 (PHez)</td></td<>	23a	2090m	2066sst	2035st	2025 s t	1975s	1965s	1,52/10.0 (PHez)
23c 2092m 2059st 2032st 2025st 1990ss 1975s 1.99/9.2 (PME) 23d 2092m 2060sst 2033st 2028st 1990s 1975s - 23d 2092m 2060sst 2033st 2028st 1990s 1975s - 24a 2090m 2045st 2022m 1995m 1970s 1865s 1.59/10.6 (PMe_3) 24b 2090m 2050st 2022m 1997m 1970s 1865s 1.85/10.2 (PMe_3) 24c 2090m 2050st 2028m 1997sth 1805s 2.13/10.0 (PMe) 25b 2060m 2051st 2025st 208sth 1978st 1985sth 1.80/9.8, 1.70/9.0 (PMe_2) 26d 2070st 2011sst 2022st 2005m 1998st 1986s - 1974ss 1943s 2011sst 202st 1983st 1948st -	23Ь	20 8 5m	2051sst	2030st	2020 s t	1985s	1970s	1.78/10.0 (PMe2)
23d 2092m 2060sst 2033sst 2028sst 1990s 1975s - 24a 2090m 2045sst 2022m 1995m 1967s 1865s 1.50/10.6 (PMe3) 24b 2085m 2045sst 2020m 1997m 1970s 1865s 1.85/10.2 (PMe3) 24b 2085m 2045sst 2020m 1997m 1970s 1865s 2.13/10.0 (PMe3) 24b 2060m 205sst 2028m 1997sch 1970s 1865ss 2.13/10.0 (PMe3) 25b 2060m 205sst 2028st 1988sch 1978m 1955sch 1.80/9.8, 1.70/9.0 (PMe2) 26d 2070st 2051sst 2022sst 2005m 1998st 1986s - 1974ss 1974ss 2011sst 2022st 1983st 1948sch 1943s -	23c	2092m	2059sst	2032sst	2025sst	1990ss	1974s	1.99/9.2 (PMe)
24a 2090m 2045sst 202m 1995m 1967s 1865s 1.59/10.6 (PMe_3) 24b 2085m 2045sst 202om 1999m 1970s 1865s 1.85/10.2 (PMe_2) 24c 2090m 2050sst 202bm 1997sch 1870s 1865ss 1.51/10.2 (PMe_2) 25b 2060m 205sst 202bsst 1988sch 1978m 1955sch 1.80/9.8, 1.70/9.0 (PMe_2) 26d 2070st 2051sst 2022sst 200sm 1998st 1986s - 1974ss 1943s 2011sst 202stst 1983st 1948sch 1943s -	23d	2092m	2060 sst	2033sst	2028sst	1990s	1975s	
24b 2085m 2045.sst 2020m 19997m 1970s 1865ss 1.85/10.2 (PMe_2) 24c 2090m 2050sst 2028m 19975ch 1855ss 2.13/10.0 (PMe_2) 25b 2060m 2051sm 2025sst 19885ch 1977m 1855sch 1.80/9.8, 1.70/9.0 (PMe_2) 26d 2070st 2031sst 2022sst 2005m 1998st 1986s - 1974ss 1943s 2021sst 2021sst 2021sst 2021sst 2021sst 2021sst 2021sst 2021sst 1988sch 1948sch -	24a	2090m	2045 ss t	2022m	1995m	1967s	1865 s	1.59/10.6 (PMe3)
24C 2090m 2050sst 2028m 1997sch 1970s 1865ss 2.13/10.0 (PMe) 25b 2060m 2055sn 2026sst 1988sch 1978m 1955sch 1.80/9.8, 1.70/9.0 (PMe) 26d 2070st 2031sst 2022sst 2005m 1998st 1986s - 1974/ss 1974ss 2021sst 2022sst 1984st 1984s - 27d 2042st 2011sst 2002sst 1983st 1948sc 1943s -	24b	2085m	2045sst	2020m	1999m	1970s	1865 s	1.85/10.2 (PMe2)
25b 2060m 2055m 2025ast 1988sch 1978m 1955sch 1.80/9.8, 1.70/9.0 (PMe2) 26d 2070st 2031sst 2022sst 2005m 1998st 1986s - 1974ss 1974ss 1943st 2021sst 2001sst 2021sst 2001sst 2021sst 1983st 1943s -	24c	2090m	2050sst	2028m	1997Sch	1970s	1865ss	2.13/10.0 (PMe)
2601 2070St 2031sst 2022sst 2005m 1998st 1986s - 1974ss 1943s 2701 2042st 2011sst 2002sst 1983st 1948sch 1943s -	25b	2060m	2055m	2026sst	1988Sch	1978m	1955Sch	1.80/9.8, 1.70/9.0 (PMe2)
1974ss 1943s 27d 2042st 2011sst 2002sst 1983st 1948sch 1943s -	26d	2070St	2031sst	2022sst	2005m	1998s t	1986s	
270 2042st 2011sst 2002sst 1983st 1948sch 1943s		1974ss	1943s					
	27d	2042st	2011sst	2002sst	1983st	1948Sch	1943s	•

Tab. 2. ³¹P-NMR-Daten (Benzol, ext. H₃PO₄) ausgewählter Verbindungen

	δ		δ		δ
6b	12.3 br.	15c	10.1	23d	56.1 br.
9d	51.5 br.	ića	1.2,1.7	24a	6.1
10Ь	20.0 br.	196	8.7	246	12.3
11c	35.0 br.	23a	12.2 br.	25b	8.0,13.9 br.
136	11.7	23b	23.3 br.	26d	52.1
14b	10.5	23c	39.5 br.		392.3 br. (µ3-P)

Für die einzelnen Clustertypen lassen sich jeweils durch Quervergleiche Beziehungen zu bekannten Strukturen herstellen. So läßt sich über die bekannte Struktur von 9d (s. u.) die Konstitution der Cluster 8-11 und 6 festlegen, in erster Linie durch die Ähnlichkeit der IR-Spektren, aber auch durch das gemeinsame Merkmal breiter ³¹P-NMR-Signale. Die Gruppe der Cluster 12-15 setzt sich IR- und NMR-mäßig deutlich davon ab und läßt sich der Gruppe 18-20 zuordnen, bei mäßiger IR- und guter NMR-Verwandtschaft, wobei 19b hier den Strukturbeweis lieferte. Auch die IR-Spektren der Cluster 23 sind grob mit denen von 8-11 verwandt, speziell wenn man berücksichtigt, daß die scheinbar fehlenden Brücken-CO-Banden in den Spektren ihrer KBr-Preßlinge auftauchen. Die ³¹P-NMR-Spektren trennen wieder die Gruppen 23 auf der einen und 24 bzw. 26 auf der anderen Seite, wobei die Spektreninterpretation konsistent mit den Strukturbestimmungen an 23d und 24b (s. u.) ist.

In der Gruppe der disubstituierten Cluster hebt sich das symmetrische 7b durch sein IR-Muster und durch sein einfaches NMR-Spektrum von allen anderen Vertretern ab. Diese (16, 17, 21, 22, 25, 27) zeigen Verwandtschaft ihres IR-Musters, wenn auch nicht ihrer IR-Intensitäten. 16a, 17b, 21a, 22b und 25b lassen ¹H-NMR-spektroskopisch verschieden gebundene Phosphanliganden erkennen, in Übereinstimmung mit den ³¹P-NMR-Spektren von 16a und 25b, von denen letzteres besonders typisch ein scharfes und ein breites Signal zeigt. Insgesamt kann für diese Klasse auch ohne beweisende Strukturanalyse die Konstitution mit einer Ru-P- und einer Co-P-Einheit als gesichert gelten.

In den ¹H- wie in den ³¹P-NMR-Spektren ergeben sich typische Abfolgen der chemischen Verschiebungen. So liegen die ¹H-Methylresonanzen für den Liganden PMe₃ bei 1.4-1.6 ppm, für PMe₂Ph bei 1.7-1.9 ppm und für PMePh₂ bei 1.8-2.1 ppm, ein Trend, der sich in gröberem Maße bei den ³¹P-NMR-Daten wiederfindet. Wichtiger als analytisches Merkmal war, daß in vergleichbaren Verbindungen die P-Methyl-Resonanzen bei Co-P-Verknüpfung ausnahmslos bei höherem Feld liegen als bei Ru-P-Verknüpfung, vgl. etwa **6a/15a** oder **23a/24a**. Dies ist für die ³¹P-Resonanzen gerade umgekehrt, aber wieder ohne Ausnahme vgl. etwa **10b/14b** oder **23b/24b**. Diese Beobachtung sollte zukünftige Zuordnungen erleichtern.

Für drei Aspekte ergaben sich Zusatzinformationen aus Signalaufspaltungen im ¹H-NMR-Spektrum. So werden die meisten der hier beschriebenen Cluster durch Koordination eines Phosphanliganden chiral. Mit PMe₂Ph als Ligand sollte das zu Diastereotopie und damit Signalverdoppelung für die Methylgruppen führen. Von den 14 hier erhaltenen PMe₂Ph-Komplexen zeigten jedoch nur drei (**6b**, **19b**, **20b**) eindeutig und zwei (**17b**, **22b**) unter Multiplettstrukturen verborgen dieses Phänomen. Weiterhin sind bei den Vinyliden-verbrückten Clustern **18–22** zwei Orientierungen durch Vertauschung der Vinyliden-Substituenten H und R möglich. Wie auch zuvor schon beobachtet¹⁴), war dies hier durch 1:1-Aufspaltungen in den ¹H-NMR-Spektren von **18a**, **19b**, **20b** und **21a** festzustellen. Und schließlich sollte behinderte Rotation des Alkinliganden über dem Metalldreieck zu Signalaufspaltungen für diesen Liganden führen. Dieses Phänomen ließ sich für den Butinliganden tatsächlich in allen Varianten beobachten. Dieser liefert bei Raumtemperatur und 60 MHz in 6a, 7b, 15a und 15b nur ein scharfes ¹H-NMR-Signal, für 6b, 6c, 11c, 15c und 17b ein stark verbreitertes Einzelsignal und für 6d und 11d ein verbreitertes Doppelsignal, während bei 17c die Signalaufspaltung sich in einer Multiplettstruktur verbirgt. Eine analoge Aufspaltung tritt für das Alkin-H-Signal bei 13a und 13b auf. Für den Spezialfall von 6d, bei dem das 60-MHz-NMR-Spektrum eines bei 40°C operierenden Geräts gerade die Signalform des Koaleszenzpunktes zeigt, während sich aus einem 250-MHz-NMR-Spektrum der Abstand der hier scharfen Signale entnehmen läßt, ließ sich so näherungsweise die freie Aktivierungsenthalpie für die Alkinrotation ermitteln¹⁶. Mit $T_{\rm c} = 313 \pm 20$ K, $\delta = 25$ Hz und $\nu = 60$ MHz errechnet sie sich zu 66 \pm 5 kJ/mol, was etwa den Werten entspricht, die wir für unsubstituierte RuCo₂-Alkin-Systeme ermittelt haben¹⁵⁾.

Strukturanalysen

Die prinzipielle Bedeutung der Heterometall-Reaktivität und die Absicherung der spektroskopischen Konstitutionszuordnungen verlangten mehrere Strukturanalysen der hier erhaltenen Komplexe. Sie wurden an den Verbindungen 9d, 19b, 23d und 24b durchgeführt. Alle Details dazu enthält der experimentelle Teil. Die Abb. 1–4 geben die Molekülstrukturen wieder, Tab. 3 nennt ausgewählte Atomabstände.

Bei allen vier Komplexen hat die Phosphansubstitution keine wesentlichen Veränderungen des Schweratom-Grundgerüsts und der Ligandenanordnungen hervorgerufen. Die Ru-Co- und Co-Co-Abstände liegen in der Nähe der für Heterometall-Cluster üblichen Werte von 265 und 250 pm¹), und die Schwankung der Ru-Co-Abstände in **9d** ist durch die Art der Anbindung des Alkinliganden begründet¹⁵). Die ungesättigten Brückenliganden in **9d** und **19b** sind wie bei den (μ_3 -X)RuCo₂(CO)₉-Grundkörpern angebunden und orientiert¹⁵). Die Metall-Schwefel-Abstände in **23d** und **24b**

Abb. 1. Molekülstruktur von 9d

Ortsspezifische Substitutionen an Heterometall-Clustern

Abb. 2. Molekülstruktur von 19b

Abb. 3. Molekülstruktur von 23d

Abb. 4. Molekülstruktur von 24b

lassen sich auf die in SFeCo₂(CO)₉ bzw. SCo₃(CO)₉ (ca. 215 pm)¹⁷ und die in SRu₃(CO)₁₀ bzw. SRuMo₂(CO)₇Cp₂ (ca. 235 pm)¹⁸ beziehen.

Bezüglich der Anordnung der externen Liganden an den drei Metallatomen gilt in allen Fällen grob, daß jeweils ML_3 -Einheiten vorliegen, wobei zwei L äquatorial und ein L axial angeordnet sind, wie es auch die (μ_3 -X) $M_3(CO)_9$ -Grundkörper vorgeben. Verzerrungen ergeben sich durch das Auftreten der CO-Brücken in **9d**, **23d** und **24b**. In allen drei Fällen sind die betroffenen CO-Liganden aber in erster Linie terminale Liganden des Cobalts, die nur in schwacher Wechselwirkung mit dem Ruthenium stehen (siehe Tab. 3), so daß die Grobaussage des Vorliegens von drei ML₃-Einheiten aufrechterhalten werden kann. In der semiverbrückenden Natur dieser CO-Liganden mag der Grund liegen, warum die IR-Spektren nicht immer CO-Brückenbanden zeigen.

Der Phosphanligand ist in allen vier Fällen in äquatorialer Position. Dies entspricht der generellen Bevorzugung dieser

Tab.	3.	Ausgewählte	Bindungslä	ingen	(pm)	der	phosphar	1
		sul	ostituierten	Clust	er			

	90	19b	23d	24b
Ru-Col	270.3(2)	265.0(1)	266.3(1)	266.7(1)
Ru-Co2	258.2(3)	264.3(1)	263.4(2)	266.5(1)
Co1-Co2	249.0(2)	249.1(1)	250.6(2)	250.4(2)
$Ru - \mu_3 X$	212(1)	213/236(1)	233.8(2)	236.4(2)
Co1-µ ₃ X	200(1)	188(1)	217.1(3)	217.3(3)
Co2- # 3X	206/210(1)	187(1)	219.9(3)	220.2(3)
M-P	220.8(3)	232.5(2)	219.1(2)	232.0(3)
Ru-C(term)	196 <u>+</u> 5(1)	188 <u>+</u> 1(1)	192 <u>+</u> 1(1)	192 <u>+</u> 1(1)
Co-C(term)	183 <u>+</u> 5(1)	179 <u>+</u> 3(1)	179 <u>+</u> 2(1)	179 <u>+</u> 2(1)
Ru-C(br)	237(1)	-	242(1)	231(1)
Co-C(br)	186(1)	-	179(1)	186(1)
P-C	3.184(1)	2.181(1)	182.7+1.4(0.5)	2*184(1)
		1.182(1)		1.183(1)
C-C(µ ₃ X)	133(2)	139(1)	-	

Tab. 4. Kristallographische Details

	9d	1 9 6	23d	24b
kristallisiert aus	Hexan/CH ₂ Cl ₂	Hexan	Hexan	Hexan
Kristall-Länge [mm]	0.60	0.70	0.25	0.72
Breite (mm)	0.25	0.60	0.20	0.23
-Dicke (mma)	0.20	0.30	0.11	0.10
Farbe	dunkelrot	dunkelrot	rot	braun
Raumgruppe	Pban	P1	P2,	P2 ₁ /c
2	8	2	2	4
a [pm]	1059.1 (3)	930.6 (3)	857.7 (3)	711.7 (3)
b (pm)	1823.5 (5)	1444.5 (5)	1299.7 (4)	1087.0 (2)
c (pm)	3039.0 (5)	905.2 (2)	1300.3 (3)	2778.8 (6)
a (Grad)	90	96.53 (2)	90	90
eta [Grad]	90	98.42 (2)	98.91 (2)	101.05 (3)
γ [Grad]	90	71.66 (3)	90	90
Zellvolumen [nm ³]	5.869	1.140	1.432	2.110
d _{ber} [g/cm ³]	1.69	1.81	1.71	1.93
d _{nef} [g/cm ³]	1.71	1.80	1.69	1.90
μ [cm ⁻¹]	16.2	22.3	17.3	23.3
AbsorptKorr.	nein	nein	nein	nein
2⊖-Bereich (Grad)	2 - 46	2·38	2·48	2·52
Lösungsmethode	Patterson	Direkt	Patterson	Direkt
Reflexe	3034	3034	3928	2786
Variable	342	296	316	257
R-Wert	0.056	0.046	0.037	0.041
Restelektronen -	+ 0.6	+ 0.9	+ 0.6	+ 0.9
dichte [10 ⁻⁶ e/pm ³]	- 1.6	- 1.5	- 0.8	- 1.0

Position in $Co_{3^{-19}}$ und Hetero-Trimetallclustern²⁰. Eine bevorzugte Orientierung der drei R-Gruppen am Phosphor relativ zu den anderen Liganden ist nicht zu erkennen. Gleiches gilt bezüglich der Frage, ob eine Anbindung des Phosphors am Cobalt oder am Ruthenium geometrisch günstiger sei. Speziell der Vergleich von **23d** und **24b** zeigt hier, daß die Umgebung der Phosphanliganden sehr ähnlich ist: sie sind beide leicht aus der Ebene des Metalldreiecks in Richtung auf das Schwefelatom herausgerückt, sie stehen beide auf der Seite des verbrückenden CO-Liganden, und sie drücken beide die äquatoriale CO-Gruppe am benachbarten Metallatom deutlich zur Seite weg. Die Diskriminierung von Cobalt und Ruthenium als Substitutionsort ist damit aus den Strukturbestimmungen *nicht* abzuleiten.

Diskussion

Bei den einfachen Metallcarbonylen nimmt die Substitutionsbereitschaft in der Regel von unten nach oben im Periodensystem und von links nach rechts im Periodensystem zu, vgl. Os₃(CO)₁₂/Fe₃(CO)₁₂ oder Cr(CO)₆/Fe(CO)₅. Es ist bis jetzt nicht klar, ob derartige Regelmäßigkeiten auch bei Heterometallkomplexen gelten. Denn hierbei kann ein Metallatom sein benachbartes elektronisch beeinflussen, und es können kinetische Faktoren über thermodynamischen dominieren. So wurde bei Zweikern-Metallcarbonylen der Kombination Fe-Mn bevorzugte Reaktion am Mn^{3} , bei der Kombination Ru-Co am Ru⁴⁾ und bei der Kombination Fe-Rh am Rh²¹⁾ gefunden. Bei Clustern sind mehrfache elektronische und sterische Beeinflussungen möglich, deren Ausmaß und Natur sich bisher nicht abschätzen lassen. Die vorliegende Arbeit ist dementsprechend ein Beitrag zur Ansammlung empirischen Materials zu dieser Thematik, wobei Wert darauf gelegt wurde, durch die Variation der beteiligten Spezies innerhalb gewisser Grenzen ein Standardproblem der Clusterchemie, nämlich Fehlschlüsse aus untypischen Einzelergebnissen, zu vermeiden.

In diesem Rahmen hat sich ein konsistentes Bild für μ_3 verbrückte FeCo₂- und RuCo₂-Cluster ergeben. Es gilt, daß von den drei Metallen Fe, Ru und Co am Cobalt die höchste Substitutionslabilität herrscht und am Ruthenium die thermodynamisch günstigste Position für den Liganden ist. Dementsprechend treten in den FeCo₂-Clustern nur Co-gebundene Monosubstitutionsprodukte auf, während in den RuCo₂-Clustern der Ligand immer am Cobalt einzutreten scheint und dann je nach Situation zum Ruthenium weiterwandern kann. Die Substitutionstendenz der Metalle in den hier untersuchten Clustern steigt demnach eindeutig in der Reihenfolge Fe < Co < Ru.

Die FeCo₂/RuCo₂/PPh₃-Konkurrenzexperimente mit 1 und 2d haben zudem belegt, daß die kinetische und thermodynamische Produktkontrolle auch für dasselbe Metall in zwei verschiedenen Clustern wirksam werden können: das Cobaltatom in 1 bindet den Liganden als erstes, muß ihn dann aber an das Cobaltatom in 2d abgeben, das ihn stabiler bindet. Gleichermaßen wird das Rutheniumatom durch einen Phosphanliganden abgesättigt, so daß der zweite am Cobalt gebunden wird: in keinem der hier untersuchten RuCo₂-Cluster wurden zwei CO-Gruppen am gleichen Metallatom (Ru) substituiert, im Gegensatz zu anderen Ru-Co-Systemen⁴⁾. Im Kontrast dazu und in Übereinstimmung mit der Fe < Co < Ru-Abstufung werden im FeCo₂-Cluster beide Phosphanliganden an die Cobaltatome gebunden. Der bevorzugte Reaktionsangriff am Cobalt in all diesen Clustern findet eine Parallele im bevorzugten Verlust des Cobalts bei Metallaustauschreaktionen²²⁾.

Die bei den RuCo₂-Clustern gegebene Wanderungsneigung des Phosphanliganden vom Cobalt zum Ruthenium läßt sich weniger eindeutig systematisieren. Bei Betrachtung des μ_3 -Brückenliganden scheint sie in der Reihenfolge S < Alkin < PR zuzunehmen. So waren für μ_3 -X = Schwefel alle vier möglichen Produkte mit Co-P-Verknüpfung isolierbar, während sich bei den Alkin-verbrückten Clustern ein heterogenes Bild bezüglich der Co-P-bzw. Ru-P-Produkte ergibt und für μ_3 -X = Phosphiniden das einzige sauber isolierte Monosubstitutionsprodukt eine Ru-P-Verknüpfung hat. Hierzu muß jedoch einschränkend gesagt werden, daß die Schwefel-verbrückten Cluster auch bei den mildesten Bedingungen Substitution eingehen und die Phosphiniden-verbrückten Cluster möglicherweise nach einem anderen Mechanismus reagieren⁷⁾. Eindeutiger ist die Abfolge der Co → Ru-Wanderungstendenz für die vier verschiedenen Phosphanliganden. Sie nimmt in der Reihenfolge $PPh_3 < PMePh_2 < PMe_2Ph < PMe_3$ zu. So waren die Co-P-verknüpften PMe₃-Derivate am schwierigsten zu erhalten, während umgekehrt bis auf eine Ausnahme die Übertragung des PPh₃-Liganden auf das Ruthenium nicht gelang. Hierin liegt der Grund, warum die vier für den Strukturvergleich ausgesuchten Cluster nicht alle den gleichen Phosphanliganden tragen. Denn die Umwandlung von 23b in 24b hat z.B. bei Raumtemperatur eine Halbwertszeit von etwa 20 Stunden, was die Gewinnung von gut kristallisiertem 23b zu sehr beeinträchtigte.

Die bereits erwähnte Behinderung der Rotation des Alkinliganden über dem Metalldreieck, die bereits Gegenstand mehrerer Untersuchungen gewesen ist²³, läßt sich ebenfalls in Abhängigkeit von den Metallatomen und den vorhandenen Liganden betrachten. Aus der Signalform in den NMR-Spektren der Butin-verbrückten Cluster läßt sich qualitativ entnehmen, daß die Rotation vom FeCo2-Cluster zum RuCo2-Cluster mal schneller (vgl. 6b/15b) und mal langsamer wird (vgl. 7b/17b), mithin kein ausgeprägter Effekt feststellbar ist. Dies ist im Kontrast zu den FeCo₂(CO)₉- und RuCo₂(CO)₉-Grundkörpern, wo die Alkin-Rotation im FeCo₂-Fall viel schneller ist^{15,24}). Bezüglich der Abhängigkeit von den Phosphanliganden ergibt sich aber eine erwartete Abfolge: mit zunehmender Größe und Zahl der Phosphanliganden wird die Alkin-Rotation immer langsamer, vgl. 15b/15c, 6a/6b/6c/6d oder 15b/17b.

Insgesamt führt der Vergleich der hier aus den fünf Typen von Ausgangsclustern erhaltenen 38 Substitutionsprodukte zu einem recht konsistenten Bild. Die Abfolge der Substitutionslabilitäten und der bevorzugte Substitutionsort ließen sich für die drei Metalle Eisen, Ruthenium und Cobalt festlegen. Nichtsdestoweniger ist dies nur der Anfang zur Ermittlung einer Hierarchie der Reaktivitäten von Metallen in Heterometall-Clustern. Diese Arbeit wurde vom Fonds der Chemischen Industrie und vom Rechenzentrum der Universität Freiburg unterstützt. Wir danken Herrn Dr. K. Steinbach, Marburg, für Massenspektren, Herrn W. Deck für Hochfeld-NMR-Spektren und Herrn Dr. D. Mani für einige Analysen.

Experimenteller Teil

Sämtliche Arbeitstechniken, Meßgeräte und Computerprogramme waren wie beschrieben²⁵⁾. Die Ausgangsverbindungen wurden nach Literaturvorschriften dargestellt. Die Phosphanliganden wurden immer als 0.1 M Lösungen in Hexan eingesetzt. Als Hexan wird die von 50-70 °C siedende Petrolether-Fraktion bezeichnet. Zu den verschiedenen Umsetzungen wird jeweils eine allgemeine Vorschrift gegeben. Alle Details dazu finden sich in Tab. 6. Tab. 5 gibt die Charakterisierung der erhaltenen Komplexe, Tab. 7 ihre Benennung.

Umsetzungen der alkinverbrückten Cluster 1 und 2: Zu der Ausgangsverbindung in 50 ml Hexan wurde bei -78°C die äquimolare Menge Phosphanligand getropft. Dann ließ man auf Raumtemp. erwärmen. Nach der angegebenen Reaktionszeit wurde filtriert, i. Vak. zur Trockne eingeengt, im Eluens aufgenommen und über eine 2×35 -cm-Kieselgel-Säule chromatographiert. Die neuen Verbindungen wurden aus Hexan umkristallisiert.

Umwandlung $10b \rightarrow 14b$: 22 mg (0.030 mmol) 10b in 10 ml Hexan wandelten sich in 3 h quantitativ um, wobei laut IR- und DC-Kontrolle nur 14b entstand, das nach Einengen i. Vak. kristallin zurückblieb.

Umwandlung 11c \rightarrow 15c: 45 mg (0.064 mmol) 11c in 20 ml Hexan wurden 24 h auf 60 °C erhitzt. Nach Filtrieren und Einengen i. Vak. verblieben 13 mg (29%) 15c, das laut IR- und DC-Kontrolle rein war.

Konkurrenzexperimente

a) 150 mg (0.32 mmol) 1 und 168 mg (0.32 mmol) 2d in 40 ml Hexan wurden mit 42 mg (0.16 mmol) PPh₃ in 1.6 ml Hexan versetzt. Sofort nach der Zugabe zeigte DC-Kontrolle die Bildung von

Tab. 5. C	Charakterisierung	der	neuen	Komplexe
-----------	-------------------	-----	-------	----------

Komplex	Schmp.	Summenformel	An	alyse 	_	Komplex	Schmp.	Summenformel		Analyse "	
	°C	(Molmasse)	С	н 	E	·	чс 	(Molmasse)	с 		E
64	105	C ₁₅ H ₁₅ Co ₂ FeO ₈ P (528.0)	Ber. 34.12 Gef. 33.85	2.86 2.86	Fe 10.58 Fe 10.35	17Ъ	88	C ₂₇ H ₂₈ Co ₂ O ₇ P ₂ Ru (745.4)	Ber. 43.50 Gef. 43.78	3.75 3.92	Co 15.81 Co 16.14
6b	93	C ₂₀ H ₁₇ Co ₂ FeO ₈ P (590.0)	Ber. 40.71 Gef. 41.17	2.90 2.89	Fe 9.47 Fe 9.12	17c	211	C ₃₇ H ₃₂ Co ₂ O ₇ P ₂ Ru (869.5)	Ber. 51.11 Gef. 51.10	3.71 3.55	Co 13.56 Co 13.37
6c	119	C ₂₅ H ₁₉ Co ₂ FeO ₈ P (652.1)	Ber. 46.05 Gef. 46.28	2.93 2.92	Fe 8.56 Fe 8.77	18 a	123	C ₁₃ H ₁₁ Co ₂ O ₈ PRu (545.1)	Ber. 28.64 Gef. 28.47	2.03 2.00	Co 21.62 Co 21.40
64	214 (Zers.)	C ₃₀ H ₂₁ Co ₂ FeO ₈ P (714.2)	Ber. 50.45 Gef. 50.26	2.96 2.93	Fe 7.82 Fe 8.03	19b	126	C ₁₉ H ₁₅ Co ₂ O ₈ PRu (621.2)	Ber. 36.73 Gef. 36.73	2.43 2.19	Co 18.97 Co 18.81
7 b	170	C ₂₇ H ₂₈ Co ₂ FeO ₇ P ₂ (700.2)	Ber. 46.31 Gef. 46.10	4.03 3.94	Fe 7.98 Fe 8.20	20Ь	137	C ₂₄ H ₁₇ Co ₂ O ₈ PRu	Molmasse 62 Ber. 42.19	22 (EI-) 2.51	MS, ¹⁰² Ru Co 17.25
8d	113	C ₂₈ H ₁₇ Co ₂ O ₈ PRu (731.4)	Ber. 45.98 Gef. 45.91	2.34 2.39	Co 16.12 Co 15.96	21a	139	(683.3) C ₁₅ H ₂₀ Co ₂ O ₇ P ₂ Ru	Gef. 42.57 Ber. 30.37	2.34	Co 16.94 Co 19.87
94	104 (Zers.)	C ₂₉ H ₁₉ Co ₂ O ₈ PRu (745.4)	Ber. 46.73 Gef. 46.83	2.57	Co 15.81 Co 15.71	22Ь	(Zers.) 152	(593.2) C ₃₁ H ₂₈ Co ₂ O ₇ P ₂ Ru	Gef. 30.46 Ber. 46.93	3.30	Co 19.47 Co 14.86
105	95 (Zers.)	$C_{24}E_{17}CO_{2}O_{8}PRu$ (683.3)	Ber. 42.19 Gef. 42.27	2.51	Co 17.25 Co 17.38	23a	(Zers.) 47	(793.4) C ₁₁ H ₉ Co ₂ O ₈ PRuS	Ger. 46.50 Ber. 23.97	1.64	Co 14.58 Co 21.38
100	107	(807.5)	Gef. 50.78	2.62	Co 14.38	23h	45	(551.2)	Nolmasse 55	1.54 52 (EI-)	$^{102}_{\rm Ru}$
114	138	(697.3)	Gef. 43.20 Ber 47 44	2.82	Co 16.59	-55	•5	(613.2)	Gef. 31.04	1.55 4 (ET-)	Co 18.95
124	97	(759.4) · C _{13H11} Co ₂ O ₈ PRu	Gef. 47.64 Ber. 28.64	2.91	Co 15.29 Co 21.62	23c	69	C ₂₁ H ₁₃ Co ₂ O ₈ PRuS (675.3)	Ber. 37.35 Gef. 37.71	1.94	Co 17.45 Co 17.09
126	88	(545.1) C ₁₈ H ₁₃ Co ₂ O ₈ PRu	Gef. 28.54 Ber. 35.61	2.08 2.16	Co 21.28 Co 19.41	234	114	Molmas: C ₂₆ H ₁₅ Co ₂ O ₈ PRus	se (-2 CO) 62 Ber. 42.35	0 (EI~! 2.05	(S, ¹⁰² Ru) Co 15.99
13a	112	(607.2) C ₁₄ H ₁₃ Co ₂ O ₈ PRu	Gef. 36.15 Ber. 30.07	2.56 2.34	Co 18.84 Co 21.08			(737.4) Molmass	Gef. 42.51 se (-3 CO) 65	2.05 4 (EI~)	Co 16.35 (S, ¹⁰² Ru
136	95	(559.2) C ₁₉ H ₁₅ Co ₂ O ₈ PRu	Gef. 30.27 Ber. 36.73	2.38 2.43	Co 20.72 Co 18.97	24a	73	C ₁₁ H ₉ Co ₂ O ₈ PRuS (551.2)	Ber. 23.97 Gef. 24.17	1.64 1.54	Co 21.38 Co 20.92
14b	98	(621.2) C ₂₄ H ₁₇ Co ₂ O ₈ PRu	Gef. 36.20 Ber. 42.19	2.85	Co 18.63 Co 17.25	24b	82	C ₁₆ H ₁₁ Co ₂ O ₈ PRus	Molmasse 55 Ber. 31.33	2 (EI-F 1.81	IS, ¹⁰² Ru) Co 19.22
15a	86	(683.3) C ₁₅ H ₁₅ Co ₂ O ₈ PRu (573.2)	Gef. 41.93 Ber. 31.43	2.51	Co 17.41 Co 20.56	24 c	86	(013.2)	Molmasse 61 Ber 37 35	1.63 4 (EI-M	(S, ¹⁰² Ru)
156	62	Coolity Coolor PRu	Molmasse 57 Ber. 37.81	4 (EI-) 2.70	$(10^{102}Ru)$	256	97	(675.3) CashaaCoaOaPaRuS	Gef. 37.34 Ber. 38.19	1.87	Co 17.73
15c	91	(635.3) C ₂₅ H ₁ C ₂ C ₂ O ₂ PRu	Gef. 37.93 Ber. 43.06	2.73	Co 18.60 Co 16.90			(723.4) (701mass	Gef. 38.26 e (-2 CO) 66	3.16 8 (EI-M	Co 16.48 (S, ¹⁰² Ru)
16a	146	(697.3) C ₁₅ H ₂₀ Co ₂ O ₇ P ₂ Ru	Gef. 43.23 Ber. 30.37	2.70 3.40	Co 16.65 Co 19.87	26d	153 (Zers.)	C ₃₂ H ₂₀ Co ₂ O ₈ P ₂ Ru (813.4)	Ber. 47.25 Gef. 47.21	2.48 2.27	Co 14.49 Co 14.70
	(Zers.)	(593.2)	Gef. 30.36	3.28	Co 19.53	274	125	C	Molmasse 81	4 (FD-M	S, ¹⁰² Ru)

H. Bantel, W. Bernhardt, A. K. Powell, H. Vahrenkamp

Tab. 6. Details zur Darstellung von 6-27

AUS	gangsvi	erb.		Reag	ens ^{a)}	Reakt.	Chromatographie	F	rodukt	
	mg	mmot		mg	i cerm	zeit(h)	Frakt. (Farbe, Eluens)		mg	z
	215	0.45	а	34	0.45	24	1 (braun, Hexan)	1	60	28
	-						2 (rotbraun, Hexan/Benzol 4:1)	6a	110	46
	130	0.27	ь	37	0.27	24	1 (braun, Hexan)	1	23	18
							2 (braungrün, Hexan/Benzol 4:1)	6b	103	64
							3 (grün, Nexan/Benzol 1:1)	76	8	4
•	240	0.50	С	100	0.50	24	1 (braun, Hexan)		30	19
	200	0 /3	a	100	0 47	74	2 (Fot, Mexan/Benzol 4:1) 1 (braum, Heren)	1	15	8
	200	0.42	ŭ	107	0.42		2 (braungrün, Hexan/Benzol 3:1)	6d	200	67
2a	319	0.64	a	49	0.64	3	1 (orange, Hexan/CH_Cl_ 10:1)	2a	18	6
-							2 (rot, Hexan/CH_CL_ 10:1)	8a	8	1
							3 (rot, Hexan/CH_CL_ 10:1)	12a	283	81
la.	272	0.55	d	147	0.56	4	1 (orange, Hexan/CH ₂ Cl ₂ 10:1)	2a	25	9
							2 (rot, Hexan/CH ₂ Cl ₂ 10:1)	8d	298	74
b	453	0.89	d	236	0.90	8	1 (orange, Hexan/CH ₂ Cl ₂ 10:1)		8	2
	214	0.77	h		0 / 0		2 (rot, Hexan/CH_2Cl_ 10:1)	20	004	21
	210	0.33	5	,,	0.40	'	2 (rot. Hexan/CH_CL_ 10:1)	106	86	38
							3 (rot, Hexan/CH_Cl_ 10:1)	14b	106	47
c	392	0.68	d	184	0.70	8	1 (orange, Hexan/CH_Cl_ 10:1)	2c	23	6
							2 (rot, Hexan/CH_CL_ 10:1)	10 d	489	89
d	220	0.42	С	83	0.42	24	1 (rot, Hexan)	2d	40	18
							2 (rot, Hexan/Benzol 3:1)	11c	142	48
								15c		
						•	5 (rot, Hexan/Benzol 1:1)	170	51	14
a	200	0.38	a	100	0.38	24	(rot, Hexan)	114	150	52
a	40 R	0.82	Ъ	116	0.84	4	1 (orange Hexan/CH_CL \$0:1)	2a	27	7
	400	0.02	~			-	2 (rot, Hexan/CH_CL_ 10:1)	12b	393	79
2b	328	0.64	а	49	0.64	6	1 (orange, Hexan/CH_Cl_ 10:1)	2b	13	4
							2 (rot, Hexan/CH ₃ CL ₅ 10:1)	13a	293	82
2b	497	0.97	b	133	0.96	12	1 (orange, Hexan/CH ₂ Cl ₂ 10:1)	2b	14	3
							2 (rot, Hexan/CH ₂ Cl ₂ 10:1)	135	519	87
d	175	0.33	а	23	0.33	24	1 (rot, Hexan)	2d	23	13
			h	-		24	2 (rot, Hexan/Benzol 3:1)	24	108	57
a	290	0.33	0	10	0.55	24	(rot, Hexan)	155	125	34
							S (rot, Hexan/Benzol 1:1)	17b	35	8
2-	04	0.18	-	15	0.20	r	(rot Heren/CH Cl 10:1)	12a	18	10
.20	90	0.10	a		0.20	· ·	(rot, Hexan/CH_Cl_ 10:1)	16a	71	66
2a	116	0.21	-			5	(rot, Hexan/CH_Cl_ 10:1)	18a	18	16
							(dunkelrot, Hexan/CH_Cl_ 10:1)	21a	8	6
Зb	183	0.29	-	·	•	5	6 (rot, Hexan/CH ₂ Cl ₂ 10:1)	19b	23	13
4b	84	0.12	~			5	5 (rot, Hexan/CH ₂ Cl ₂ 10:1)	20b	8	10
				-			(dunkelrot, Hexan/CH_Cl_ 10:1)	226	6	1
a	122	0.25	a	20	0.27	1	(orange, Hexan/CH ₂ Cl ₂ 10:1)	10-		4
							(hot, Hexan/CH ₂ Cl ₂ (0:1)	21a	7	5
h	on	0.18	ь	28	0 20	5	(orange Hexen/CH_CL 10:1)	35	6	7
	70	0.10	2		0.20		2 (rot, Hexan/CH_C(_ 10:1)	19b	103	92
C	84	0.16	b	21	0.15	48	(orange, Hexan/CH_CL_ 10:1)	3c	8	10
						:	2 (rot, Hexan/CH_CL_ 10:1)	20Ь	64	78
						:	5 (braun, Hexan/ČH٫Čl٫ 10:1)	22b	15	12
8a	53	0.10	а	8	0.10	2	ו (rot, Hexan/CH ₂ Cl̃ ₂ 10:1)	18a	12	23
.							(braun, Hexan/CH ₂ Cl ₂ 10:1)	21a	44	74
υb	47	0.07	D	11	0.08	2	I (rot, Hexan/CH2Cl2 10:1)	20D	8	17
	716	0 47	-	70	0.50	,	Curaun, mexan/CH2CL2 10:1)	223	44 180	45
4	265	0.63	h	30 58	0.50	۲. ۲.		23b	127	48
4	200	0.40	c c	4R	0.24	1	<u>.</u>	23c	112	69
4	138	0.27	ă	70	0.27	24		23d	142	70
3a	32	0.06	-			4		24a	27	84
Зb	47	0.08	-			4		24b	41	87
3c	40	0.06	-					24c	35	87
4	210	0.42	b	57	0.42	5	1 (braun, Hexan/Benzol 10:1)	4	6	3
							2 (braun, Hexan/Benzol 5:1)	24D	113	44
							3 (braun, Kexan/Benzol 1:1)	230	21	~
E	210	0 14	د ر	105	0 10		1 (heave Heave)		£0	
5	240	0.41	d	105	0.40	24	1 (braun, Hexan) 3 (rot Hexan/Reprol A(1)	5 264	60 50	25

^{a)} $\mathbf{a} = PMe_3$, $\mathbf{b} = PMe_2Ph$, $\mathbf{c} = PMePh_2$, $\mathbf{d} = PPh_3$. $-^{b)}$ 11c und 15c wurden durch mechanische Auslese getrennt.

6d an. Nach 24 h wurde über eine 2 \times 20-cm-Kieselgel-Säule chromatographiert. Die erste Fraktion (rotbraun, Hexan) enthielt 265 mg eines Gemisches aus 1 und 2d, die zweite Fraktion (rot, Hexan/ Benzol 10:1) hinterließ 43 mg (35%) 11d.

b) 26 mg (0.050 mmol) 2d und 36 mg (0.050 mmol) 6d in 20 ml Hexan wurden 2 d bei Raumtemp. gerührt. Chromatographie über eine 2 \times 20-cm-Kieselgel-Säule ergab in der ersten Fraktion (braunrot, Hexan) 20 mg eines Gemisches, das laut NMR-Spektrum aus 7 mg (30%) 2d und 13 mg (50%) 1 bestand. Die zweite Fraktion (rot, Hexan/Benzol 7:1) hinterließ 16 mg (49%) 11d.

	Tab. 7. 1	Benennung	der n	leuen	Komp	lexe
--	-----------	-----------	-------	-------	------	------

Octacarbonyl-(µ3-2-butin)-(L)-di	icobalteisen(Co-Co, 2Fe-Co)

- 7 Heptacarbonyl-(μ_3 -2-butin)-bis(L)-dicobalteisen(Co Co, 2Fe Co) 8-15, 18-10, 23, 24, 26
- Octacarbonyl-(μ_3 -X)-(L)-dicobaltruthenium(Co Co, 2Ru Co)
- 16, 17, 21, 22, 25, 27 Heptacarbonyl-(μ₃-X)-bis(L)-dicobaltruthenium(Co - Co, 2Ru - Co)

µ3-Brückenliganden X

6

8, 12, 16 Acetylen	9, 13 Propin
10, 14, Phenylacetylen	11, 15, 17 2-Butin
18, 21 Ethenyliden	19 Propenyliden
20, 22 Phenylethenyliden	23, 24, 25 Sulfido
26, 27 Phenylphosphiniden	

Phosphanliganden L

a	Trimethylphosphan	b Dimethylphenylphosphan
c	Methyldiphenylphosphan	d Triphenylphosphan

Tab. 8. Atomparameter für 9d

ATOMXYZRu $0.2458(1)$ $-0.0703(1)$ $0.1393(0)$ Col $0.1226(2)$ $0.0513(1)$ $0.1119(1)$ Col $0.1226(2)$ $0.0513(1)$ $0.1119(1)$ Col $0.3492(1)$ $0.0576(1)$ $0.1334(1)$ P $0.5564(3)$ $0.0694(2)$ $0.1291(1)$ C1 $0.335(1)$ $-0.0202(7)$ $0.0845(4)$ H1 $0.400(9)$ $-0.030(7)$ $0.063(3)$ C2 $0.270(1)$ $0.0379(8)$ $0.0713(4)$ C3 $0.284(1)$ $0.087(9)$ $0.0281(4)$ H2 $0.216(1)$ $0.1250(9)$ $0.0278(4)$ H3 $0.266(1)$ $0.1029(9)$ $0.0258(4)$ C10 $0.159(1)$ $-0.1400(8)$ $0.1019(5)$ D10 $0.112(1)$ $-0.1806(6)$ $0.804(3)$ C11 $0.146(1)$ $-0.0995(7)$ $0.1937(5)$ D11 $0.092(1)$ $-0.1166(7)$ $0.2223(4)$ C20 $0.006(1)$ $0.0524(7)$ $0.2011(3)$ C21 $0.025(1)$ $-0.0373(7)$ $0.0523(4)$ C22 $0.075(1)$ $0.1427(8)$ $0.0922(5)$ D21 $0.037(1)$ $0.197(7)$ $0.1539(5)$ D22 $0.043(1)$ $0.1976(7)$ $0.0803(5)$ C30 $0.297(1)$ $0.209(5)$ $0.1551(3)$ C31 $0.336(1)$ $0.0155(5)$ $0.1336(2)$ C40 $0.6495(8)$ $-0.0155(5)$ $0.1336(2)$	Ueq 0.0368(5) 0.0386(9) 0.0304(8) 0.033(2) 0.037(7) 0.07(5) 0.045(8) 0.07(1)
Ru $0.2458(1)$ $-0.0703(1)$ $0.1393(0)$ Col $0.1226(2)$ $0.0513(1)$ $0.1119(1)$ Co2 $0.3492(1)$ $0.0576(1)$ $0.1334(1)$ Cp $0.5564(3)$ $0.0694(2)$ $0.1291(1)$ C1 $0.335(1)$ $-0.0202(7)$ $0.0845(4)$ H1 $0.400(9)$ $-0.030(7)$ $0.063(3)$ C2 $0.270(1)$ $0.0379(8)$ $0.0713(4)$ C3 $0.284(1)$ $0.0807(9)$ $0.0281(4)$ H2 $0.216(1)$ $0.1250(9)$ $0.0278(4)$ H3 $0.266(1)$ $0.1429(9)$ $0.0205(4)$ H4 $0.378(1)$ $0.1029(9)$ $0.0278(4)$ H3 $0.266(1)$ $0.1448(9)$ $0.0005(4)$ H4 $0.378(1)$ $-0.129(9)$ $0.2278(4)$ C10 $0.159(1)$ $-0.1400(8)$ $0.1019(5)$ D10 $0.112(1)$ $-0.1806(6)$ $0.0804(3)$ C11 $0.146(1)$ $-0.099(7)$ $0.1539(5)$ D12 $0.453(1)$ $-0.1370(7)$ $0.1539(5)$ D12 $0.453(1)$ $-0.1764(6)$ $0.1678(5)$ D20 $0.006(1)$ $0.0524(7)$ $0.2011(3)$ C21 $0.025(1)$ $-0.0053(8)$ $0.0762(5)$ D22 $0.03(1)$ $0.1976(7)$ $0.0803(5)$ C30 $0.317(1)$ $0.1491(7)$ $0.1465(4)$ D30 $0.297(1)$ $0.299(5)$ $0.1551(3)$ C31 $0.343(1)$ $0.0148(6)$ $0.2253(3)$ C40 $0.6495(8)$ $-0.0155(5)$ $0.1336(2)$	0.0368(5) 0.0386(9) 0.0304(8) 0.033(2) 0.037(7) 0.07(5) 0.045(8) 0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0386(9) 0.0304(8) 0.033(2) 0.037(7) 0.07(5) 0.045(8) 0.07(1)
$\begin{array}{ccccc} & 0.3492(1) & 0.0576(1) & 0.1334(1) \\ p & 0.5564(3) & 0.0694(2) & 0.1291(1) \\ c1 & 0.335(1) & -0.0202(7) & 0.0845(4) \\ H1 & 0.400(9) & -0.030(7) & 0.063(3) \\ c2 & 0.270(1) & 0.0379(8) & 0.0713(4) \\ c3 & 0.284(1) & 0.0807(9) & 0.0281(4) \\ H2 & 0.216(1) & 0.1250(9) & 0.0278(4) \\ H3 & 0.266(1) & 0.0448(9) & 0.0005(4) \\ H4 & 0.378(1) & 0.1029(9) & 0.0258(4) \\ c10 & 0.159(1) & -0.1400(8) & 0.1019(5) \\ c11 & 0.146(1) & -0.199(7) & 0.1937(5) \\ c11 & 0.092(1) & -0.1166(7) & 0.223(4) \\ c12 & 0.378(1) & 0.0524(7) & 0.1539(5) \\ c12 & 0.363(1) & -0.1764(6) & 0.1638(5) \\ c20 & 0.006(1) & 0.0524(7) & 0.2011(3) \\ c21 & 0.025(1) & -0.033(7) & 0.0523(4) \\ c22 & 0.006(1) & 0.0524(7) & 0.2011(3) \\ c21 & 0.025(1) & -0.0373(7) & 0.0523(4) \\ c22 & 0.075(1) & 0.1427(8) & 0.0922(5) \\ c23 & 0.043(1) & 0.1976(7) & 0.1803(5) \\ c33 & 0.297(1) & 0.209(5) & 0.1551(3) \\ c31 & 0.336(1) & 0.0155(5) & 0.1336(2) \\ c41 & 0.6549(8) & -0.0647(5) & 0.0985(2) \\ \end{array}$	0.0304(8) 0.033(2) 0.037(7) 0.07(5) 0.045(8) 0.07(1)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.033(2) 0.037(7) 0.07(5) 0.045(8) 0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.037(7) 0.07(5) 0.045(8) 0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07(5) 0.045(8) 0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.045(8) 0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H3 $0.266(1)$ $0.048(9)$ $0.0005(4)$ H4 $0.378(1)$ $0.1029(9)$ $0.0258(4)$ C10 $0.159(1)$ $-0.1400(8)$ $0.1019(5)$ D10 $0.112(1)$ $-0.1400(8)$ $0.00804(3)$ C11 $0.146(1)$ $-0.0995(7)$ $0.1937(5)$ D11 $0.022(1)$ $-0.1166(7)$ $0.2223(4)$ C12 $0.378(1)$ $-0.1370(7)$ $0.1539(5)$ D12 $0.453(1)$ $-0.1764(6)$ $0.1638(5)$ C20 $0.006(1)$ $0.0524(7)$ $0.2011(3)$ C21 $0.025(1)$ $-0.0053(8)$ $0.0762(5)$ D22 $0.030(1)$ $-0.0373(7)$ $0.0523(4)$ C22 $0.075(1)$ $0.1427(8)$ $0.0922(5)$ C30 $0.317(1)$ $0.1491(7)$ $0.1465(4)$ C31 $0.336(1)$ $0.0155(7)$ $0.188(4)$ C31 $0.343(1)$ $0.0148(6)$ $0.2253(3)$ C40 $0.6495(8)$ $-0.0155(5)$ $0.1336(2)$	0.0900(0)
H4 $0.378(1)$ $0.1029(9)$ $0.0258(4)$ C10 $0.159(1)$ $-0.1400(8)$ $0.1019(5)$ D10 $0.112(1)$ $-0.1806(6)$ $0.0804(3)$ C11 $0.146(1)$ $-0.0995(7)$ $0.1937(5)$ D11 $0.092(1)$ $-0.1166(7)$ $0.2223(4)$ C12 $0.378(1)$ $-0.1370(7)$ $0.1539(5)$ D12 $0.453(1)$ $-0.1764(6)$ $0.1638(5)$ C20 $0.006(1)$ $0.0523(8)$ $0.1678(5)$ D21 $0.025(1)$ $-0.0373(7)$ $0.523(4)$ C22 $0.006(1)$ $0.0373(7)$ $0.0523(4)$ C21 $-0.030(1)$ $-0.0373(7)$ $0.0523(4)$ C22 $0.075(1)$ $0.1427(8)$ $0.0922(5)$ D23 $0.347(1)$ $0.1976(7)$ $0.1803(5)$ C30 $0.297(1)$ $0.2099(5)$ $0.1551(3)$ C31 $0.336(1)$ $0.0155(7)$ $0.1336(2)$ C40 $0.6495(8)$ $-0.0155(5)$ $0.1336(2)$	0.0900(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0900(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.051(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.075(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.051(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.079(8)
$\begin{array}{cccccccc} 0.453(1) & -0.1764(6) & 0.1638(5) \\ c20 & 0.047(1) & 0.0523(8) & 0.1678(5) \\ c20 & 0.006(1) & 0.0524(7) & 0.2011(3) \\ c21 & 0.025(1) & -0.0053(8) & 0.0762(5) \\ c21 & -0.030(1) & -0.0373(7) & 0.0523(4) \\ c22 & 0.075(1) & 0.1427(8) & 0.0922(5) \\ c22 & 0.043(1) & 0.1976(7) & 0.0803(5) \\ c30 & 0.317(1) & 0.1491(7) & 0.1465(4) \\ c30 & 0.297(1) & 0.209(5) & 0.1551(3) \\ c31 & 0.336(1) & 0.0148(6) & 0.2253(3) \\ c40 & 0.6495(8) & -0.0647(5) & 0.0985(2) \\ \end{array}$	0.057(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.098(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.058(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.081(8)
$\begin{array}{cccccccc} -0.030(1) & -0.0373(7) & 0.0523(4) \\ 222 & 0.075(1) & 0.1427(8) & 0.0922(5) \\ 222 & 0.043(1) & 0.1976(7) & 0.0803(5) \\ 230 & 0.317(1) & 0.1491(7) & 0.1465(4) \\ 230 & 0.297(1) & 0.2099(5) & 0.1551(3) \\ 231 & 0.336(1) & 0.0155(7) & 0.1889(4) \\ 231 & 0.343(1) & 0.0148(6) & 0.2253(3) \\ 240 & 0.6495(8) & -0.0155(5) & 0.1336(2) \\ 241 & 0.6549(8) & -0.0647(5) & 0.0985(2) \\ \end{array}$	0.055(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.089(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.061(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.11(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.044(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.070(7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.047(8)
C40 0.6495(8) -0.0155(5) 0.1336(2) C41 0.6549(8) -0.0647(5) 0.0985(2)	0.078(7)
(241 0.6549(8) -0.0647(5) 0.0985(2)	0.037(7)
	0.056(9)
$C42 \qquad 0.7242(8) -0.1295(5) \qquad 0.1024(2)$	0.07(1)
(43 0.7880(8) - 0.1450(5) 0.1415(2)	0.07(1)
0.7825(8) - 0.0959(5) 0.1766(2)	0.07(1)
(245 0.7133(8) -0.0311(5) 0.1727(2)	0.052(9)
$\begin{array}{cccc} 441 & 0.6055(8) & -0.0526(5) & 0.0683(2) \\ 0.6055(8) & -0.0526(5) & 0.0683(2) \\ \end{array}$	0.0900(0)
442 0.7284(8) -0.1675(5) 0.0753(2) 0.144((2))	0.0900(0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0900(0)
444 = 0.8319(8) -0.1079(5) = 0.2009(2)	0.0900(0)
145 0.7091(8) 0.0069(5) 0.1999(2) = 0.6075(7) 0.1101(5) 0.0775(2)	0.0900(0)
-50 $0.00/5(7)$ $0.1131(5)$ $0.0775(3)$	0.034(7)
-52 = 0.5333(7) = 0.1743(3) = 0.0033(3)	0.039(9)
52 0.3779(7) 0.2129(3) 0.0202(3)	0.03(1)
53 0.004/(7) 0.1303(3) 0.0030(3)	0.07(1)
255 0.7143(7) 0.0907(5) 0.0543(3)	0.056(9)
0.0510(7) = 0.0507(5) = 0.0515(5)	0.0900(0)
152 0.5251(7) 0.2603(5) 0.0153(3)	0.0900(0)
152 0.0251(7) 0.2204(5) -0.0259(3)	0.0900(0)
150 0.010(3)	0.0900(0)
0.7671(7) 0.0433(5) 0.0651(3)	0.0900(0)
(60 0.6303(7) 0.1292(5) 0.1702(2)	0.036(7)
(261 0.7520(7) 0.1553(5) 0.1623(2)	0.048(8)
(52 0.8117(7) 0.1998(5) 0.1933(2)	0.07(1)
(63 0.7496(7) 0.2183(5) 0.2322(2)	0.06(1)
(64 0.6279(7) 0.1922(5) 0.2402(2)	0.07(1)
0.5682(7) $0.1477(5)$ $0.2092(2)$	0.057(9)
161 0.8001(7) 0.1410(5) 0.1322(2)	0.0900(0)
(62 0.9059(7) 0.2200(5) 0.1872(2))	0 090010
163 0.7958(7) 0.2528(5) 0.2562(2)	0.000000
164 0.5798(7) 0.2065(5) 0.2703(2)	0.0900(0)
165 0.4740(7) 0.1275(5) 0.2153(2)	0.0900(0)

Alkin-Vinyliden-Umwandlungen: Die Lösung des Alkin-verbrückten Ausgangsclusters in 20 ml Toluol wurde 5 h zum Sieden erhitzt. Nach Einengen i. Vak. zur Trockne wurde mit Hexan/CH₂Cl₂ (10:1) über eine 2 \times 40-cm-Kieselgel-Säule chromatographiert. Die

Tab. 9. Atomparameter für 19b

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$ \begin{array}{cccccc} Ru & 0.4850(1) & 0.7393(1) & 0.2420(1) & 0.0381(5) \\ Col & 0.3394(1) & 0.8679(1) & 0.4448(1) & 0.0514(7) \\ Co2 & 0.2448(1) & 0.8910(1) & 0.1754(1) & 0.0471(7) \\ P & 0.6956(2) & 0.6437(1) & 0.3860(2) & 0.046(1) \\ C50 & 0.5790(8) & 0.8748(5) & 0.2872(9) & 0.054(5) \\ C50 & 0.5790(8) & 0.8748(5) & 0.2872(9) & 0.054(5) \\ C51 & 0.626(1) & 0.8981(7) & 0.119(1) & 0.067(7) \\ H511 & 0.544(1) & 0.9036(7) & 0.040(1) & 0.07(3) \\ H512 & 0.714(1) & 0.8472(7) & 0.091(1) & 0.07(3) \\ H513 & 0.649(1) & 0.9590(7) & 0.138(1) & 0.09(3) \\ C62 & 0.9467(7) & 0.5334(4) & 0.1256(7) & 0.100(6) \\ C63 & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ C64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ C65 & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.11(1) \\ C66 & 0.7542(7) & 0.5357(4) & 0.2835(7) & 0.056(5) \\ H62 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.16(5) \\ H63 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ H65 & 0.8021(7) & 0.3127(4) & 0.713(7) & 0.18(6) \\ H65 & 0.8021(7) & 0.3551(6) & 0.544(1) & 0.060(6) \\ H42 & 0.7903(9) & 0.7501(6) & 0.542(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.542(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5876(5) & 0.2236(8) & 0.093(6) \\ C12 & 0.567(1) & 0.6899(6) & 0.467(7) & 0.108(6) \\ C21 & 0.256(1) & 0.683(6) & 0.590(1) & 0.073(7) \\ C23 & 0.205(1) & 0.981(8) & 0.502(1) & 0.073(7) \\ C23 & 0.205(1) & 0.981(8) & 0.502(1) & 0.073(7) \\ C23 & 0.205(1) & 0.981(8) & 0.502(1) & 0.073(7) \\ C23 & 0.205(1) & 0.981($	ATOM	X	¥	Z	Veg
$ \begin{array}{ccccc} Col & 0.3394(1) & 0.8679(1) & 0.4448(1) & 0.0514(7) \\ Co2 & 0.2448(1) & 0.8910(1) & 0.1754(1) & 0.0471(7) \\ C40 & 0.4293(9) & 0.8934(5) & 0.2872(9) & 0.054(5) \\ C50 & 0.5790(8) & 0.8748(5) & 0.2872(9) & 0.048(5) \\ H50 & 0.671(7) & 0.863(4) & 0.334(7) & 0.048(5) \\ H50 & 0.671(7) & 0.863(4) & 0.334(7) & 0.04(2) \\ C51 & 0.626(1) & 0.8981(7) & 0.119(1) & 0.067(7) \\ H511 & 0.544(1) & 0.9036(7) & 0.040(1) & 0.07(3) \\ H513 & 0.649(1) & 0.9590(7) & 0.138(1) & 0.09(3) \\ C62 & 0.9467(7) & 0.5334(4) & 0.2396(7) & 0.070(6) \\ C63 & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ C64 & 0.9779(7) & 0.3698(4) & 0.1255(7) & 0.11(1) \\ C66 & 0.7542(7) & 0.4505(4) & 0.2484(7) & 0.091(9) \\ C61 & 0.8079(7) & 0.5357(4) & 0.2484(7) & 0.091(9) \\ C61 & 0.8079(7) & 0.3657(4) & 0.2483(7) & 0.056(5) \\ H62 & 0.9837(7) & 0.5800(4) & 0.2637(7) & 0.16(5) \\ H63 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.24(7) \\ H64 & 1.036(4) & 0.3157(4) & 0.2763(7) & 0.24(7) \\ H65 & 0.8021(7) & 0.3165(4) & 0.473(7) & 0.24(7) \\ H41 & 0.926(9) & 0.6539(6) & 0.474(1) & 0.060(6) \\ H42 & 0.7903(9) & 0.7501(6) & 0.526(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.547(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.477(1) & 0.08(3) \\ C11 & 0.3801(8) & 0.587(5) & 0.2236(8) & 0.093(6) \\ C12 & 0.567(1) & 0.7792(8) & 0.490(1) & 0.73(7) \\ H51 & 0.586(1) & 0.5950(8) & 0.562(1) & 0.07(7) \\ C13 & 0.2256(1) & 0.772(8) & 0.490(1) & 0.076(8) \\ C21 & 0.256(1) & 0.772(9) & 0.618(5) & -0.467(7) & 0.108(6) \\ C21 & 0.256(1) & 0.792(8) & 0.490(1) & 0.73(7) \\ C33 & 0.2294(8) & 0.863(5) & 0.590(1) & 0.073(7) \\ C33 & 0.2294(8) & 0.863(5) & 0.618(6) & -0.013(1) & 0.067(7) \\ C33 & 0.2294(18) & 0.863(6) & -0.013(1) & 0.062(6) \\ C33 & 0.2294(18) & 0.863(6) & -0.013(1) & 0.062(6) \\ C33 & 0.2294(18) & 0.863(6) & -0.013(1) & 0.062(6) \\$	Ru	0.4850(1)	0.7393(1)	0.2420(1)	0.0381(5)
$\begin{array}{cccc} c_0 & c_0.2448(1) & 0.8910(1) & 0.1754(1) & 0.0471(7) \\ p & 0.6956(2) & 0.6437(1) & 0.3860(2) & 0.046(1) \\ c_0 & 0.4293(9) & 0.8934(5) & 0.2872(9) & 0.054(5) \\ c_0 & 0.5790(8) & 0.8748(5) & 0.2581(9) & 0.048(5) \\ c_0 & 0.671(7) & 0.663(4) & 0.334(7) & 0.042(2) \\ c_0 & 0.671(7) & 0.863(4) & 0.334(7) & 0.042(2) \\ c_0 & 0.671(1) & 0.065(2) & 0.040(1) & 0.06(2) \\ h_{511} & 0.544(1) & 0.9036(7) & 0.040(1) & 0.06(2) \\ h_{512} & 0.714(1) & 0.8472(7) & 0.091(1) & 0.07(3) \\ h_{513} & 0.649(1) & 0.9590(7) & 0.138(1) & 0.09(3) \\ c_62 & 0.9467(7) & 0.5334(4) & 0.2396(7) & 0.070(6) \\ c_63 & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ c_64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ c_{65} & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.11(1) \\ c_{66} & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ c_{61} & 0.8079(7) & 0.5357(4) & 0.2483(7) & 0.056(5) \\ h_{63} & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ h_{64} & 1.036(47) & 0.3127(4) & 0.7013(7) & 0.18(6) \\ h_{65} & 0.8021(7) & 0.3165(4) & 0.1453(7) & 0.242(7) \\ h_{66} & 0.6587(7) & 0.365(6) & 0.526(1) & 0.05(2) \\ c_4 & 0.8394(9) & 0.6599(6) & 0.524(1) & 0.06(2) \\ h_{41} & 0.9260(9) & 0.6539(6) & 0.524(1) & 0.06(2) \\ h_{42} & 0.7903(9) & 0.7501(6) & 0.547(1) & 0.08(3) \\ c_{11} & 0.3831(9) & 0.6396(6) & 0.524(1) & 0.072(7) \\ h_{51} & 0.586(1) & 0.5581(8) & 0.487(1) & 0.08(3) \\ c_{12} & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ h_{52} & 0.600(1) & 0.6305(8) & 0.627(1) & 0.08(3) \\ c_{12} & 0.567(1) & 0.688(6) & 0.2233(9) & 0.058(6) \\ c_{21} & 0.256(1) & 0.7749(6) & 0.576(1) & 0.08(3) \\ c_{12} & 0.567(1) & 0.6838(6) & 0.590(1) & 0.0637(5) \\ c_{23} & 0.205(1) & 0.794(6) & 0.590(1) & 0.073(7) \\ c_{33} & 0.2024(8) & 0.8345(5) & 0.686(7) & 0.073(7) \\ c_{33} & 0.2024(1) & 0.8636(5) & 0.618(5) & -0.013(1) & 0.067(7) \\ c_{33} & 0.2024(18) & 0.8636(5) & 0.063(7) & 0.073(7) \\ c_{33} & 0.2024(18) & 0.863(5) & 0.013(1) & 0.062(6) \\ c_{33} & 0.2094(8) & 0.843(5) & -0.013(1) & 0.062(6) \\ c_{33} & 0.2094(18) & 0.8636(5) & -0.013(1) & 0.062(6) \\ c_{33} & 0.2094(18) & 0.863(5) &$	Col	0.3394(1)	0.8679(1)	0.4448(1)	0.0514(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co2	0.2448(1)	0.8910(1)	0.1754(1)	0.0471(7)
$\begin{array}{ccccc} C40 & 0.4293(9) & 0.8934(5) & 0.2872(9) & 0.054(5) \\ C50 & 0.5790(8) & 0.8748(5) & 0.281(9) & 0.048(5) \\ H50 & 0.671(7) & 0.863(4) & 0.334(7) & 0.04(2) \\ C51 & 0.626(1) & 0.8981(7) & 0.119(1) & 0.067(7) \\ H511 & 0.544(1) & 0.9036(7) & 0.040(1) & 0.06(2) \\ H512 & 0.714(1) & 0.8472(7) & 0.091(1) & 0.06(2) \\ H513 & 0.649(1) & 0.950(7) & 0.0138(1) & 0.09(3) \\ C62 & 0.9467(7) & 0.5334(4) & 0.2396(7) & 0.070(6) \\ C63 & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ C64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ C65 & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.019(19) \\ C61 & 0.8079(7) & 0.5357(4) & 0.2335(7) & 0.056(5) \\ H63 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ H64 & 0.056(7) & 0.456(4) & 0.2785(7) & 0.056(5) \\ H63 & 1.1271(7) & 0.3456(4) & 0.1276(7) & 0.056(5) \\ H64 & 0.6587(7) & 0.3165(4) & 0.473(7) & 0.24(7) \\ H66 & 0.6587(7) & 0.3501(6) & 0.524(1) & 0.060(6) \\ H41 & 0.9260(9) & 0.6539(6) & 0.524(1) & 0.060(6) \\ H41 & 0.9260(9) & 0.5590(8) & 0.542(1) & 0.072(7) \\ H51 & 0.586(1) & 0.5580(8) & 0.477(1) & 0.060(6) \\ H41 & 0.9260(9) & 0.6539(6) & 0.524(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7268(6) & 0.399(1) & 0.08(3) \\ C11 & 0.3031(9) & 0.550(8) & 0.627(1) & 0.17(4) \\ H52 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ H52 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.073(7) \\ C12 & 0.567(1) & 0.5581(8) & 0.487(1) & 0.06(3) \\ C12 & 0.567(1) & 0.5581(8) & 0.542(1) & 0.072(7) \\ H51 & 0.746(1) & 0.5581(8) & 0.567(1) & 0.08(3) \\ C12 & 0.567(1) & 0.689(6) & 0.523(9) & 0.054(6) \\ C21 & 0.256(1) & 0.772(8) & 0.490(1) & 0.064(6) \\ C21 & 0.256(1) & 0.772(8) & 0.490(1) & 0.073(7) \\ C33 & 0.205(1) & 0.792(8) & 0.490(1) & 0.073(7) \\ C33 & 0.202(14) & 0.786(5) & 0.186(7) & 0.081(5) \\ C33 & 0.202(14) & 0.786(5) & 0.186(7) & 0.081(5) \\ C33 & 0.2094(7) & 0.796(5) & 0.186(7) & 0.081(5) \\ C34 & 0.916(9) & 1.1018(5) & 0.167(1) & 0.125(7) \\ C33 & 0.202(14) & 0.843(6) & -0.013(1) & 0.067(7) \\ C33 & 0.202(14) & 0.843(6) & -0.013(1) & 0.062(6) \\ C33 & 0.2094(18) & 0.863(6) & -0.013(1) & 0.062(6) \\ C33 & 0.2094(18) & 0.863(5) & -0.$	P	0.6956(2)	0.6437(1)	0.3860(2)	0.046(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C40	0.4293(9)	0.8934(5)	0.2872(9)	0.054(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C50	0.5790(8)	0.8748(5)	0.2581(9)	0.048(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н50	0,671(7)	0.863(4)	0.334(7)	0.04(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51	0,626(1)	0.8981(7)	0.119(1)	0.067(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H511	0.544(1)	0.9036(7)	0.040(1)	0.06(2)
	H512	0.714(1)	0.8472(7)	0.091(1)	0.07(3)
$\begin{array}{ccccc} 62 & 0.9467(7) & 0.5334(4) & 0.2396(7) & 0.070(6) \\ 63 & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ 64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ 65 & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.11(1) \\ 66 & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ 61 & 0.8079(7) & 0.5307(4) & 0.2484(7) & 0.091(9) \\ 61 & 0.8079(7) & 0.5307(4) & 0.2637(7) & 0.16(5) \\ 83 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ 86 & 0.8021(7) & 0.3165(4) & 0.1433(7) & 0.18(6) \\ 86 & 0.8021(7) & 0.3165(4) & 0.473(7) & 0.060(6) \\ 86 & 0.6587(7) & 0.4566(4) & 0.2786(7) & 0.05(2) \\ 64 & 0.8394(9) & 0.6539(6) & 0.526(1) & 0.060(6) \\ 841 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.060(6) \\ 841 & 0.9260(9) & 0.7501(6) & 0.524(1) & 0.060(6) \\ 843 & 0.8724(9) & 0.7268(6) & 0.399(1) & 0.08(3) \\ 65 & 0.6861(1) & 0.5560(8) & 0.487(1) & 0.08(3) \\ 61 & 0.3031(9) & 0.5514(8) & 0.487(1) & 0.11(4) \\ 852 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ 853 & 0.746(1) & 0.5548(8) & 0.487(1) & 0.08(3) \\ 611 & 0.3031(9) & 0.5438(6) & 0.223(9) & 0.058(6) \\ 612 & 0.567(1) & 0.6876(5) & 0.2236(8) & 0.093(6) \\ 612 & 0.567(1) & 0.6876(5) & 0.203(9) & 0.114(8) \\ 622 & 0.489(1) & 0.5924(8) & 0.487(1) & 0.06(6) \\ 621 & 0.256(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ 621 & 0.256(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ 622 & 0.489(1) & 0.526(5) & 0.540(19) & 0.114(8) \\ 622 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.076(8) \\ 623 & 0.205(1) & 0.9818(8) & 0.502(1) & 0.073(7) \\ 633 & 0.2094(7) & 0.796(5) & 0.1864(7) & 0.081(5) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.067(7) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(6) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(5) & -0.600(7) & 0.099(6) \\ 633 & 0.2094(8) & 0.863(5) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(5) & -0.013(1) & 0.062(6) \\ 633 & 0.2094(8) & 0.863(5) & -0.01$	н513	0.649(1)	0.9590(7)	0.138(1)	0.09(3)
$\begin{array}{ccccc} \hat{c}_{63} & 1.0316(7) & 0.4505(4) & 0.1607(7) & 0.096(9) \\ c64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ c65 & 0.8391(7) & 0.3720(4) & 0.1256(7) & 0.11(1) \\ c66 & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ c61 & 0.8079(7) & 0.5357(4) & 0.2835(7) & 0.056(5) \\ h62 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.16(5) \\ h63 & 1.1271(7) & 0.4499(4) & 0.1305(7) & 0.12(4) \\ h64 & 1.0364(7) & 0.3127(4) & 0.0713(7) & 0.18(6) \\ h65 & 0.8021(7) & 0.3165(4) & 0.2786(7) & 0.264(7) \\ h66 & 0.6587(7) & 0.4566(4) & 0.2786(7) & 0.05(2) \\ c4 & 0.8394(9) & 0.6989(6) & 0.474(1) & 0.060(6) \\ h42 & 0.7903(9) & 0.7501(6) & 0.526(1) & 0.06(2) \\ h42 & 0.7903(9) & 0.7501(6) & 0.542(1) & 0.06(2) \\ h43 & 0.8724(9) & 0.7508(8) & 0.542(1) & 0.072(7) \\ h51 & 0.586(1) & 0.5581(8) & 0.487(1) & 0.11(4) \\ h52 & 0.600(1) & 0.6305(8) & 0.527(1) & 0.17(4) \\ h53 & 0.746(1) & 0.5514(8) & 0.576(1) & 0.08(3) \\ c12 & 0.67(1) & 0.6899(6) & 0.0627(7) & 0.17(4) \\ h53 & 0.746(1) & 0.5514(8) & 0.562(1) & 0.08(3) \\ c12 & 0.67(1) & 0.6899(6) & 0.0627(7) & 0.108(6) \\ c12 & 0.567(1) & 0.6899(6) & 0.0627(7) & 0.108(6) \\ c21 & 0.256(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ c21 & 0.256(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ c22 & 0.489(1) & 0.8638(5) & 0.590(1) & 0.076(8) \\ c23 & 0.205(1) & 0.7949(6) & 0.502(1) & 0.073(7) \\ c33 & 0.208(1) & 0.726(5) & 0.1864(7) & 0.08(7) \\ c33 & 0.294(8) & 0.863(5) & 0.167(1) & 0.087(7) \\ c33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.786(5) & 0.173(1) & 0.087(7) \\ c33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ c34 & 0.292(1) & 0.8618$	C62	0.9467(7)	0.5334(4)	0.2396(7)	0.070(6)
$\begin{array}{ccccc} 6.64 & 0.9779(7) & 0.3698(4) & 0.1256(7) & 0.11(1) \\ 6.65 & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.11(1) \\ 6.66 & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ 6.11 & 0.8079(7) & 0.5307(4) & 0.2835(7) & 0.056(5) \\ 1.62 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.16(5) \\ 1.63 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ 1.64 & 1.0364(7) & 0.3127(4) & 0.0713(7) & 0.18(6) \\ 1.65 & 0.8021(7) & 0.3165(4) & 0.1433(7) & 0.24(7) \\ 1.66 & 0.6587(7) & 0.4566(4) & 0.2786(7) & 0.050(2) \\ 1.64 & 0.8394(9) & 0.6989(6) & 0.474(1) & 0.060(6) \\ 1.64 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ 1.64 & 0.9260(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 1.64 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 1.65 & 0.686(1) & 0.5950(8) & 0.474(1) & 0.06(2) \\ 1.65 & 0.686(1) & 0.5950(8) & 0.477(1) & 0.11(4) \\ 1.52 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ 1.53 & 0.746(1) & 0.5514(8) & 0.487(1) & 0.03(3) \\ 0.11 & 0.3831(9) & 0.6438(6) & 0.2236(8) & 0.093(6) \\ 0.12 & 0.567(1) & 0.6876(5) & 0.2236(8) & 0.093(6) \\ 0.21 & 0.255(1) & 0.772(8) & 0.490(1) & 0.076(8) \\ 0.22 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.0467(7) \\ 0.108(6) \\ 0.22 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.076(8) \\ 0.23 & 0.205(1) & 0.749(5) & 0.540(19) & 0.114(8) \\ 0.22 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.076(8) \\ 0.23 & 0.205(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ 0.23 & 0.205(1) & 0.792(5) & 0.1864(7) & 0.081(5) \\ 0.31 & 0.0094(7) & 0.796(5) & 0.1864(7) & 0.081(5) \\ 0.31 & 0.0094(7) & 0.796(5) & 0.1864(7) & 0.081(5) \\ 0.32 & 0.422(1) & 0.8638(6) & -0.013(1) & 0.067(7) \\ 0.33 & 0.229(4) & 0.8638(6) & -0.013(1) & 0.067(7) \\ 0.33 & 0.229(4) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.33 & 0.229(4) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.33 & 0.229(4) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.33 & 0.299(4) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 0.34 & 0.292(1) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.34 & 0.292(1) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.34 & 0.292(1) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.34 & 0.292(1) & 0.8638(6) & -0.013(1) & 0.062(6) \\ 0.34 & 0.292(1) & 0.8638($	C63	1.0316(7)	0.4505(4)	0.1607(7)	0.096(9)
$\begin{array}{ccccc} 65 & 0.8391(7) & 0.3720(4) & 0.1695(7) & 0.11(1) \\ 666 & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ 661 & 0.8079(7) & 0.5357(4) & 0.2835(7) & 0.056(5) \\ 862 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.12(4) \\ 863 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ 864 & 1.0364(7) & 0.3127(4) & 0.0713(7) & 0.12(4) \\ 865 & 0.8021(7) & 0.3165(4) & 0.1453(7) & 0.24(7) \\ 866 & 0.6587(7) & 0.4566(4) & 0.2786(7) & 0.05(2) \\ 74 & 0.8394(9) & 0.6598(6) & 0.474(1) & 0.060(6) \\ 841 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ 842 & 0.7903(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 843 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 843 & 0.8724(9) & 0.7501(6) & 0.542(1) & 0.06(2) \\ 843 & 0.8724(9) & 0.7501(6) & 0.542(1) & 0.072(7) \\ 851 & 0.586(1) & 0.5581(8) & 0.627(1) & 0.17(4) \\ 852 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ 853 & 0.746(1) & 0.5544(8) & 0.576(1) & 0.08(3) \\ 0.11 & 0.3204(8) & 0.5876(5) & 0.2233(9) & 0.058(6) \\ 012 & 0.6172(9) & 0.6618(5) & -0.0467(7) & 0.108(6) \\ 012 & 0.6172(9) & 0.6618(5) & -0.0467(7) & 0.108(6) \\ 021 & 0.2056(1) & 0.792(8) & 0.490(1) & 0.073(7) \\ 0.20 & 0.1228(1) & 0.7249(6) & 0.5203(9) & 0.114(8) \\ 022 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.067(5) \\ 023 & 0.1228(8) & 1.0526(5) & 0.5401(9) & 0.114(8) \\ 023 & 0.1228(8) & 1.0526(5) & 0.1804(7) & 0.081(5) \\ 031 & 0.0994(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 031 & 0.0994(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 033 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.067(7) \\ 033 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 033 & 0.289(4) & 0.863(5) & -0.1360(7) & 0.099(6) \\ 034 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 033 & 0.289(4) & 0.863(5) & -0.1360(7) & 0.089(6) \\ 0.23 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 033 & 0.289(4) & 0.863(5) & 0.130(7) & 0.089(6) \\ 0.23 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 033 & 0.289(4) & 0.863(5) & 0.1360(7) & 0.089(6) \\ 0.34 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 033 & 0.289(4) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 034 & 0.282(1) & 0.8618(6) & -0.13(1) & 0.062(6) \\ 034 & 0.282(1) $	C64	0.9779(7)	0.3698(4)	0.1256(7)	0.11(1)
$\begin{array}{cccc} 666 & 0.7542(7) & 0.4550(4) & 0.2484(7) & 0.091(9) \\ 661 & 0.8079(7) & 0.5357(4) & 0.2835(77) & 0.056(5) \\ 162 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.16(5) \\ 163 & 1.1271(7) & 0.4499(4) & 0.1305(7) & 0.12(4) \\ 164 & 1.0364(7) & 0.3127(4) & 0.0713(7) & 0.18(6) \\ 185 & 0.8021(7) & 0.3165(4) & 0.1453(7) & 0.24(7) \\ 186 & 0.6837(7) & 0.4566(4) & 0.2786(7) & 0.05(2) \\ 24 & 0.8394(9) & 0.6989(6) & 0.474(1) & 0.060(2) \\ 141 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ 142 & 0.7903(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 143 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ 144 & 0.8724(9) & 0.7581(8) & 0.487(1) & 0.072(7) \\ 151 & 0.586(1) & 0.5950(8) & 0.627(1) & 0.17(4) \\ 152 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ 153 & 0.746(1) & 0.5514(8) & 0.576(1) & 0.08(3) \\ 11 & 0.3204(8) & 0.5876(5) & 0.2236(8) & 0.093(6) \\ 12 & 0.617(2) & 0.618(5) & 0.2423(9) & 0.058(6) \\ 012 & 0.657(1) & 0.6838(6) & 0.590(1) & 0.076(8) \\ 021 & 0.255(1) & 0.772(8) & 0.490(1) & 0.076(8) \\ 021 & 0.255(1) & 0.7724(8) & 0.590(1) & 0.076(8) \\ 021 & 0.255(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ 022 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.057(5) \\ 031 & 0.0094(7) & 0.7848(8) & 0.502(1) & 0.073(7) \\ 023 & 0.1228(8) & 1.0526(5) & 0.4864(7) & 0.081(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1846(7) & 0.081(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 033 & 0.2294(8) & 0.863(5) & 0.603(7) & 0.094(6) \\ 033 & 0.2294(8) & 0.863(5) & 0.163(1) & 0.062(6) \\ 033 & 0.2294(8) & 0.863(5) & 0.130(7) & 0.099(6) \\ \end{array}$	C65	0.8391(7)	0.3720(4)	0.1695(7)	0.11(1)
$\begin{array}{ccccc} 6.1 & 0.8079(7) & 0.5357(4) & 0.2835(7) & 0.056(5) \\ H62 & 0.9837(7) & 0.5890(4) & 0.2637(7) & 0.16(5) \\ H63 & 1.1271(7) & 0.4489(4) & 0.1305(7) & 0.12(4) \\ H64 & 1.0364(7) & 0.3127(4) & 0.0713(7) & 0.28(7) \\ H65 & 0.8021(7) & 0.3165(4) & 0.1453(7) & 0.24(7) \\ H66 & 0.6587(7) & 0.4566(4) & 0.2786(7) & 0.05(2) \\ H41 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ H42 & 0.7903(9) & 0.7501(6) & 0.544(1) & 0.060(6) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7501(6) & 0.544(1) & 0.106(2) \\ H51 & 0.586(1) & 0.5581(8) & 0.542(1) & 0.01(4) \\ H52 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.11(4) \\ H53 & 0.746(1) & 0.5514(8) & 0.576(1) & 0.08(3) \\ C11 & 0.3204(8) & 0.5876(5) & 0.2233(9) & 0.058(6) \\ C12 & 0.672(7) & 0.6899(6) & 0.0627(7) & 0.108(6) \\ C21 & 0.256(1) & 0.792(8) & 0.497(1) & 0.114(8) \\ C22 & 0.489(1) & 0.7249(6) & 0.5203(9) & 0.114(8) \\ C22 & 0.489(1) & 0.8638(5) & -0.0467(7) & 0.108(6) \\ C21 & 0.256(1) & 0.792(8) & 0.490(1) & 0.076(8) \\ C21 & 0.256(1) & 0.792(8) & 0.690(1) & 0.073(7) \\ C33 & 0.205(1) & C.9818(8) & 0.5203(9) & 0.114(6) \\ C31 & 0.098(9) & C.83345(6) & 0.590(1) & 0.011(6) \\ C31 & 0.098(9) & C.83345(6) & 0.1812(8) & 0.057(5) \\ C32 & 0.147(1) & 1.0218(7) & 0.1864(7) & 0.081(7) \\ C33 & 0.299(4) & 0.8638(5) & -0.1360(7) & 0.081(5) \\ C33 & 0.299(4) & 0.8618(6) & -0.013(1) & 0.067(7) \\ C33 & 0.292(1) & 0.8618(6) & -0.013(1) & 0.067(7) \\ C33 & 0.292(1) & 0.8618(6) & -0.1360(7) & 0.089(6) \\ C33 & 0.299(4) & 0.8638(5) & -0.1360(7) & 0.089(6) \\ C34 & 0.094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.1804(7) & 0.081(5) \\ C34 & 0.094(8) & 0.843(5) & -0.1360(7) & 0.089(6) \\ C34 & 0.094(7) $	C66	0.7542(7)	0.4550(4)	0.2484(7)	0.091(9)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C61	0.8079(7)	0.5357(4)	0.2835(7)	0.056(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н62	0.9837(7)	0.5890(4)	0.2637(7)	0.16(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	863	1.1271(7)	0.4489(4)	0.1305(7)	0.12(4)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	нб4	1.0364(7)	0.3127(4)	0.0713(7)	0.18(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н65	0.8021(7)	0.3165(4)	0.1453(7)	0.24(7)
$\begin{array}{ccccc} C4 & 0.8394(9) & 0.6989(6) & 0.474(1) & 0.060(6) \\ H41 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ H42 & 0.7903(9) & 0.7501(6) & 0.526(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7268(6) & 0.399(1) & 0.08(3) \\ C5 & 0.648(1) & 0.5950(8) & 0.487(1) & 0.11(4) \\ H51 & 0.586(1) & 0.5950(8) & 0.487(1) & 0.17(4) \\ H52 & 0.600(1) & 0.6305(8) & 0.627(1) & 0.17(4) \\ H53 & 0.746(1) & 0.5514(8) & 0.576(1) & 0.08(3) \\ C11 & 0.381(9) & 0.6438(6) & 0.2323(9) & 0.058(6) \\ 011 & 0.3204(8) & 0.5876(5) & 0.2323(9) & 0.058(6) \\ 012 & 0.617(1) & 0.6899(6) & 0.0627(9) & 0.064(6) \\ 021 & 0.256(1) & 0.7724(8) & 0.490(1) & 0.076(8) \\ 021 & 0.256(1) & 0.7724(8) & 0.490(1) & 0.076(8) \\ 022 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.064(6) \\ 023 & 0.205(1) & C.9818(8) & 0.502(1) & 0.073(7) \\ 023 & 0.1228(8) & 1.0526(5) & 0.4864(7) & 0.081(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 031 & 0.0094(7) & 1.0218(7) & 0.173(1) & 0.087(7) \\ 032 & 0.482(1) & 0.8618(6) & -0.013(1) & 0.087(7) \\ 033 & 0.229(14) & 0.8618(6) & -0.013(1) & 0.062(6) \\ 033 & 0.2094(8) & 0.843(6) & 0.502(1) & 0.79(6) \\ 03 & 0.299(48) & 0.843(6) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(6) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & 0.167(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843(5) & -0.1360(7) & 0.099(6) \\ 03 & 0.299(48) & 0.843($	н66	0.6587(7)	0.4566(4)	0.2786(7)	0.05(2)
$\begin{array}{ccccc} H41 & 0.9260(9) & 0.6539(6) & 0.526(1) & 0.06(2) \\ H42 & 0.7903(9) & 0.7501(6) & 0.544(1) & 0.06(2) \\ H43 & 0.8724(9) & 0.7268(6) & 0.594(1) & 0.08(3) \\ C5 & 0.648(1) & 0.5950(8) & 0.542(1) & 0.11(4) \\ H51 & 0.586(1) & 0.5581(8) & 0.627(1) & 0.11(4) \\ H53 & 0.746(1) & 0.5514(8) & 0.627(1) & 0.11(4) \\ H53 & 0.746(1) & 0.5514(8) & 0.576(1) & 0.08(3) \\ C11 & 0.3831(9) & 0.6438(6) & 0.2323(9) & 0.058(6) \\ 011 & 0.3204(8) & 0.5876(5) & 0.2236(8) & 0.093(6) \\ C12 & 0.67(1) & 0.6899(6) & 0.0627(9) & 0.064(6) \\ 012 & 0.6172(9) & 0.6618(5) & -0.0467(7) & 0.108(6) \\ C21 & 0.203(1) & 0.7249(6) & 0.5203(9) & 0.114(8) \\ C22 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.076(8) \\ C23 & 0.205(1) & C.794(8) & 0.502(1) & 0.073(7) \\ C33 & 0.1228(8) & 1.6526(5) & 0.1812(8) & 0.057(5) \\ C33 & 0.094(7) & 0.7969(5) & 0.184(7) & 0.081(5) \\ C34 & 0.094(7) & 0.7969(5) & 0.184(7) & 0.081(5) \\ C33 & 0.2094(1) & 0.7969(5) & 0.184(7) & 0.081(7) \\ C33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.067(7) \\ C33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(7) \\ C33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.282(1) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.013(1) & 0.062(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.289(4) & 0.8618(6) & -0.136(07) & 0.089(6) \\ C33 & 0.$	C4	0.8394(9)	0.6989(6)	0.474(1)	0.060(6)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H41	0.9260(9)	0.6539(6)	0.526(1)	0.06(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H42	0.7903(9)	0.7501(6)	0.544(1)	0.06(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н43	0.8724(9)	0.7268(6)	0.399(1)	0.08(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.648(1)	0.5950(8)	0.542(1)	0.072(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H51	0.586(1)	0.5581(8)	0.487(1)	0.11(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H52	0.600(1)	0.6305(8)	0.627(1)	0.17(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н53	0.746(1)	0.5514(8)	0.576(1)	0.08(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	0.3831(9)	0.6438(6)	0.2323(9)	0.058(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	011	0.3204(8)	0.5876(5)	0.2236(8)	0.093(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	0.567(1)	0.6899(6)	0.0627(9)	0.064(6)
$\begin{array}{cccccc} 2.1 & 0.256(1) & 0.7792(8) & 0.490(1) & 0.076(8) \\ 021 & 0.203(1) & 0.7249(6) & 0.5203(9) & 0.114(8) \\ 022 & 0.489(1) & 0.8638(6) & 0.590(1) & 0.064(6) \\ 022 & 0.5822(8) & 0.8636(5) & 0.6862(7) & 0.090(5) \\ 023 & 0.205(1) & 0.9818(8) & 0.502(1) & 0.073(7) \\ 023 & 0.1228(8) & 1.0526(5) & 0.5401(9) & 0.111(6) \\ 031 & 0.0988(9) & 0.8345(6) & 0.1812(8) & 0.057(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 032 & 0.147(1) & 1.0218(7) & 0.173(1) & 0.087(7) \\ 032 & 0.0916(9) & 1.1018(5) & 0.167(1) & 0.125(7) \\ 033 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ 033 & 0.2994(8) & 0.8435(5) & -0.1360(7) & 0.099(6) \\ \end{array}$	012	0.6172(9)	0.6618(5)	-0.0467(7)	0.108(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	0.256(1)	0.7792(8)	0.490(1)	0.076(8)
$\begin{array}{ccccc} 2&0,489(1)&0.8638(6)&0.590(1)&0.064(6)\\ 022&0.5822(8)&0.8636(5)&0.6862(7)&0.090(5)\\ 023&0.205(1)&C.9818(8)&0.502(1)&0.073(7)\\ 023&0.1228(8)&1.0526(5)&0.5401(9)&0.111(6)\\ 031&0.0988(9)&C.8345(6)&0.1812(8)&0.057(5)\\ 031&0.0094(7)&0.7969(5)&0.1864(7)&0.081(5)\\ 032&0.147(1)&1.0218(7)&0.173(1)&0.087(7)\\ 032&0.0916(9)&1.1018(5)&0.167(1)&0.087(7)\\ 033&0.282(1)&0.8618(6)&-0.013(1)&0.062(6)\\ 033&0.2994(8)&0.8453(5)&-0.1360(7)&0.089(6)\\ \end{array}$	021	0.203(1)	0.7249(6)	0.5203(9)	0.114(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	0.489(1)	0.8638(6)	0.590(1)	0.064(6)
$\begin{array}{cccccc} & 0.205(1) & C.9818(8) & 0.502(1) & 0.073(7) \\ 023 & 0.1228(8) & 1.0526(5) & 0.5401(9) & 0.111(6) \\ 031 & 0.0988(9) & C.8345(6) & 0.1812(8) & 0.057(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ 032 & 0.147(1) & 1.0218(7) & 0.173(1) & 0.087(7) \\ 033 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ 033 & 0.2994(8) & 0.8453(5) & -0.1360(7) & 0.089(6) \\ \end{array}$	022	0.5822(8)	0.8636(5)	0.6862(7)	0.090(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ç23	0.205(1)	C.9818(8)	0.502(1)	0.073(7)
$\begin{array}{cccc} C31 & 0.0988(9) & C.8345(6) & 0.1812(8) & 0.057(5) \\ 031 & 0.0094(7) & 0.7969(5) & 0.1864(7) & 0.081(5) \\ C32 & 0.147(1) & 1.0218(7) & 0.173(1) & 0.087(7) \\ 032 & 0.0916(9) & 1.1018(5) & 0.167(1) & 0.125(7) \\ C33 & 0.282(1) & 0.8618(6) & -0.013(1) & 0.062(6) \\ 033 & 0.2994(8) & 0.8453(5) & -0.1360(7) & 0.089(6) \\ \end{array}$	023	0.1228(8)	1.0526(5)	0.5401(9)	0.111(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	0.0988(9)	0.8345(6)	0.1812(8)	0.057(5)
C32 0.147(1) 1.0218(7) 0.173(1) 0.087(7) 032 0.0916(9) 1.1018(5) 0.167(1) 0.125(7) C33 0.282(1) 0.8618(6) -0.013(1) 0.062(6) 033 0.2994(8) 0.8453(5) -0.1360(7) 0.089(6)	031	0.0094(7)	0.7969(5)	0.1864(7)	0.081(5)
032 0.0916(9) 1.1018(5) 0.167(1) 0.125(7) C33 0.282(1) 0.8618(6) -0.013(1) 0.062(6) 033 0.2994(8) 0.8453(5) -0.1360(7) 0.089(6)	C32	0.147(1)	1.0218(7)	0.173(1)	0.087(7)
C330.282(1)0.8618(6)-0.013(1)0.062(6)0330.2994(8)0.8453(5)-0.1360(7)0.089(6)	032	0.0916(9)	1.1018(5)	0.167(1)	0.125(7)
033 0.2994(8) 0.8453(5) -0.1360(7) 0.089(6)	C33	0.282(1)	0.8618(6)	-0.013(1)	0.062(6)
	033	0.2994(8)	0.8453(5)	-0.1360(7)	0.089(6)

erste Fraktion (orange) enthielt jeweils geringe Mengen einer unbekannten Verbindung, die zweite Fraktion (gelb) geringe Mengen Ru₃(CO)₁₂, die dritte (orange) geringe Mengen des jeweiligen unsubstituierten Vinyliden-Komplexes (μ_3 -C=CHR)RuCo₂(CO)₉, die vierte (braun) geringe Mengen eines Gemischs aus Co₄(CO)₁₂ und HRuCo₃(CO)₁₂, die fünfte (rot) den erwarteten alkinverbrückten Cluster. Ausgehend von **12a** und **14b** traten noch eine sechste (braun, unbekannt) und eine siebente Fraktion (dunkelrot) auf, die disubstituiertes Produkt enthielt. Weitere Details siehe Tab. 6.

Umsetzungen der vinylidenverbrückten Cluster 3: Die Cluster 3a, **b** und **c** wurden in jeweils 15 ml Hexan, ihre Folgeprodukte 18a und 20b in jeweils 10 ml CH₂Cl₂ vorgelegt. Nach Zugabe des Phosphanliganden wurde die angegebene Zeit bei Raumtemp. gerührt. Dann wurde i. Vak. zur Trockne eingeengt und mit Hexan/CH₂Cl₂ (10:1) über eine 2 × 40-cm-Kieselgel-Säule chromatographiert. Neue Komplexe wurden aus Hexan umkristallisiert.

Umsetzungen von 4: Der Ausgangscluster in 20 ml Pentan wurde bei 0°C langsam mit 0.1 M Lösung des Phosphanliganden versetzt. Nach Rühren bei 0°C für die angegebene Zeit wurde filtriert und auf -78°C gekühlt, wobei die Produkte 23 ausfielen.

Isomerisierung der Cluster 23: Die Lösung des jeweiligen Clusters 23 in 15 ml Hexan wurde 4 h auf 60° C erwärmt. Nach Filtrieren und Kühlen auf -78° C fiel der jeweilige Cluster 24 aus.

Darstellung von 25b (Details siehe Tab. 6): Die Lösung von 4 in 40 ml Pentan wurde mit der äquimolaren Menge PMe₂Ph versetzt und 5 h auf 30°C erwärmt. Nach Filtrieren und Einengen i. Vak. zur Trockne wurde über eine 2 \times 40-cm-Kieselgel-Säule chromatographiert.

Darstellung von 26d und 27d (Details siehe Tab. 6): Eine Lösung von 5 in 50 ml Hexan wurde mit der äquimolaren Menge PPh₃ versetzt und 24 h gerührt. Die anschließende Chromatographie mit Hexan/Benzol lieferte die Ausgangsverbindung in der ersten und die identifizierten Produkte in der dritten und vierten Fraktion. Die

Tab. 10. Atomparameter für 23d

ATOM	x	Y	Z	Ueq
Ru	0.1760(1)	0.0000(0)	0.2846(1)	0.0401(3)
Col	0.1513(1)	0.1828(1)	0.1910(1)	0.0372(6)
Co2	-0.0782(1)	0.0611(1)	0.1587(1)	0.0450(6)
P	0 2470(3)	0.3226(2)	0.2714(2)	0.036(1)
s	0.0085(3)	0.1374(2)	0.3076(2)	0.043(1)
C10	0.350(1)	0.0054(8)	0.3968(7)	0.055(5)
CII	0.061(1)	-0.0980(8)	0.3533(8)	0.053(5)
C12	0.001(1)	-0.1036(8)	0.2073(8)	0.058(6)
C20	0.120(1)	0.2284(7)	0.0613(7)	0.056(6)
C20	0.330(1)	0.1116(7)	0.1907(7)	0.049(5)
C20	0.001(1)	0.0059(9)	0.0512(7)	0.062(5)
C30	-0.213(1)	0.1587(8)	0.0950(8)	0.058(6)
C32	-0.215(1)	-0.0370(8)	0.0930(0)	0.074(7)
010	0 4523(9)	0.0088(7)	0.4625(6)	0.085(4)
010	-0.0056(9)	-0.1587(6)	0 3013(7)	0.081(5)
012	0.323(1)	-0.1654(6)	0.1638(7)	0.090(6)
020	0.100(1)	0.2558(7)	-0.0224(6)	0.091(5)
020	0.4530(8)	0.0971(5)	0.1712(6)	0.068(4)
031	0.054(1)	-0.0273(6)	-0.0157(6)	0.098(6)
031	-0.2928(9)	0.2213(6)	0.0575(6)	0.083(5)
032	-0.301(1)	-0.0974(7)	0.2055(9)	0.115(7)
C41	0.3425(6)	0.2707(5)	0.4808(4)	0.049(5)
C42	0.4522(6)	0.2415(5)	0.5665(4)	0.059(6)
C43	0.6116(6)	0.2337(5)	0.5572(4)	0.058(6)
C44	0.6613(6)	0.2550(5)	0.4623(4)	0.058(6)
C45	0.5516(6)	0.2842(5)	0.3766(4)	0.049(5)
C40	0.3922(6)	0.2921(5)	0.3859(4)	0.039(4)
H41	0.2191(6)	0.2769(5)	0.4880(4)	0.0900(0)
H42	0.4137(6)	0.2250(5)	0.6400(4)	0.0900(0)
н43	0.6966(6)	0.2111(5)	0.6235(4)	0.0900(0)
H44	0.7848(6)	0.2489(5)	0.4551(4)	0.0900(0)
H45	0.5901(6)	0.3007(5)	0.3031(4)	0.0900(0)
C51	0.1505(5)	0.4738(4)	0.4028(4)	0.049(5)
C52	0.0405(5)	0.5414(4)	0.4340(4)	0.058(6)
C53	-0.1144(5)	0.5424(4)	0.3818(4)	0.071(7)
C55	-0.0493(5)	0.4080(4)	0.2672(4)	0.050(5)
C50	0.1055(5)	0.4070(4)	0.3194(4)	0.038(4)
H51	0.2704(5)	0.4730(4)	0.4432(4)	0.0900(0)
H52	0.0753(5)	0.5931(4)	0.4985(4)	0.0900(0)
H53	-0.1995(5)	0.5948(4)	0.4059(4)	0.0900(0)
H54	-0.2792(5)	0.4764(4)	0.2580(4)	0.0900(0)
H55	-0.3841(5)	0.3563(4)	0.2027(4)	0.0900(0)
C61	0.3577(7)	0.5155(4)	0.2142(4)	0.058(5)
C62	0.4424(7)	0.5804(4)	0.1575(4)	0.066(6)
C63	0.5216(7)	0.5397(4)	0.0808(4)	0.060(6)
C64	0.5162(7)	0.4342(4)	0.0608(4)	0.062(6)
C65	0.4315(7)	0.3694(4)	0.1175(4)	0.050(5)
C50	0.3523(7)	0.4101(4)	0.1941(4)	0.039(4)
H51	0.2964(7)	0.5470(4)	0.2735(4)	0.0900(0)
H62	0.4466(7)	0.6620(4)	0.1730(4)	0.0900(0)
н63	0.5872(7)	0.5899(4)	0.0369(4)	0.0900(0)
H64	0.5776(7)	0.4027(4)	0.0014(4)	0.0900(0)
H65	0.4273(7)	0.2877(4)	0.1020(4)	0.0900(0)

Tab. 11. Atomparameter für 24b

ATOM	x	Ŷ	Z	Veq
Ru	0.2140(1)	0.4265(1)	0.1147(0)	0.0324(3)
Col	0.1810(2)	0.3713(1)	0.2062(0)	0.0388(5)
Co2	0.2191(2)	0.1978(1)	0.1495(0)	0.0398(5)
2	0.3263(3)	0.6270(2)	0.1161(1)	0.038(1)
S	0.4401(3)	0.3350(2)	0.1780(1)	0.043(1)
C10	-0.013(1)	0.4612(8)	0.0666(3)	0.041(4)
C11	0.358(1)	0.3769(9)	0.0668(3)	0.048(5)
C12	0.024(1)	0.4857(9)	0.1689(3)	0.046(5)
C20	0.000(1)	0.2897(9)	0.2283(3)	0.047(5)
C21	0.274(1)	0.4533(9)	0.2609(3)	0.048(5)
C30	0.221(1)	0.0840(9)	0.1964(3)	0.048(5)
C31	C.335(1)	0.1087(9)	0.1086(4)	0.056(5)
C32	-C.028(1)	0.2055(9)	0.1174(4)	0.056(5)
010	-0.1441(9)	0.4804(7)	0.0389(2)	0.061(4)
011	0.444(1)	0.3467(8)	0.0387(2)	0.072(5)
012	-0.1011(9)	0.5528(7)	0.1672(2)	0.061(4)
020	-0.111(1)	0.2361(7)	0.2437(3)	0.069(5)
021	0.330(1)	0.4991(8)	0.2970(3)	0.074(5)
030	0.220(1)	0.0091(7)	0.2251(3)	0.077(5)
031	0.410(1)	0.0512(8)	0.0837(3)	0.085(5)
032	-0.180(1)	0.2040(8)	0.0983(3)	0.082(5)
C1	0.145(1)	0.7415(7)	0.0924(3)	0.041(4)
62	0.041(1)	0.8053(9)	0.1220(4)	0.052(5)
HZ	0.01(2)	0.77(1)	0.160(4)	0.0900(0)
C3	-0.103(2)	0.886(1)	0.1025(5)	0.068(7)
нз	-0.19(2)	0.93(1)	0.126(4)	0.0900(0)
C4	-0.141(2)	0.908(1)	0.0540(5)	0.070(7)
H4	-0.23(2)	0.98(1)	0.044(4)	0.0900(0)
05	-0.044(2)	0.845(1)	0.0243(4)	0.076(7)
15	-0.06(2)	0.87(1)	0.002(5)	0.0900(0)
0	0.101(2)	0.763(1)	0.0416(4)	0.002(6)
10	0.15(2)	0.72(1)	0.012(4)	0.0900(0)
67	0.439(2)	0.682(1)	0.17/2(3)	0.05/(5)
n/	0.348(2)	0.009(1)	0.203/(3)	0.0900(0)
10	0.4//(2)	0.770(1)	0.1/38(3)	0.0900(0)
7 9	0.00/(2)	0.02/(1)	0.10//(3)	0.0900(0)
	J. 314(1)	0.002(1)	0.0801(4)	0.003(0)
110	J. 409(1)	0.018(1)	0.0432(4)	0.0900(0)
n11	0.033(1)	0.398(1)	0.0988(4)	0.0900(0)
a12	0.009(1)	0.747(1)	0.0/88(4)	0.0900(0)

zweite Fraktion (rot) enthielt geringe Mengen einer unbekannten Substanz.

Strukturanalysen²⁶: Alle kristallographischen Details sind in Tab. 4 zusammengefaßt. Tab. 8-11 geben die Atomparameter für

die vier Strukturen. Bei den Verfeinerungen wurden die H-Atome mit fixem C-H-Abstand und gemeinsamen Temperaturfaktoren mit einbezogen sowie die C₆H₅- und CH₃-Gruppen als starre Körper behandelt. Alle Atome außer Wasserstoff wurden anisotrop verfeinert. Zu den Berechnungen dienten Reflexe mit $I \ge 3\sigma(I)$.

CAS-Registry-Nummern

1: 105693-41-2 / 2a: 98419-61-5 / 2b: 105693-55-8 / 2c: 105693-56-9 / 2d: 98419-59-1 / 3a: 88031-63-4 / 3b: 98419-58-0 / 3c: 88031-65-6 / 4: 86272-87-9 / 5: 91357-68-5 / 6a: 113648-42-3 / 6b: 113648-43-4 / 6c: 113648-45-6 / 6d: 113648-46-7 / 7b: 113648-44-5 / 8a: 113648-47-8 / 8d: 113648-49-0 / 9d: 113648-50-3 / 10b: 113648-51-4 / 10d: 113648-53-6 / 11c: 113648-54-7 / 11d: 113648-57-0 / 12a: 113648-48-9 / 12b: 113648-58-1 / 13a: 113648-59-2 / 13b: 113648-60-5 / 14b: 113648-52-5 / 15a: 113648-61-6 / 15b: 113648-62-7 / 15c: 113648-55-8 / 16a: 113648-64-9 / 17b: 113648-63-8 / 17c: 113648-56-9 / 18a: 113648-65-0 / 19b: 113648-67-2 / 20b: 113648-68-3 / 21 a: 113648-66-1 / 22b: 113648-69-4 / 23a: 113648-70-7 / 23b: 113648-71-8 / 23c: 113648-72-9 / 23d: 113648-73-0 / 24a: 113648-74-1 / 24b: 113648-75-2 / 24c: 113648-76-3 / 25b: 113648-77-4 / 26d: 113648-78-5 / 27d: 113648-79-6 / PMes: 594-09-2 / PMe₂Ph: 672-66-2 / PMePh₂: 1486-28-8 / PPh₃: 603-35-0

- ¹⁾ W. L. Gladfelter, G. L. Geoffroy, Adv. Organomet. Chem. 18 (1980) 207.
- ²⁾ H. Vahrenkamp, Adv. Organomet. Chem. 22 (1983) 169
- ³⁾ H. J. Langenbach, H. Vahrenkamp, Chem. Ber. 112 (1979) 3773, und darin zitierte Arbeiten.
- ⁴⁾ S. Guesmi, N. J. Taylor, P. H. Dixneuf, A. J. Carty, Organometallics 5 (1986) 1964, und darin zitierte Arbeiten.
- ⁵⁾ P. Johnston, G. J. Hutchings, L. Denner, J. C. A. Boeyens, N. J. Coville, Organometallics 6 (1987) 1292, und darin zitierte Arbeiten.
- ⁶⁾ R. Rossetti, G. Gervasio, P. L. Stanghellini, J. Chem. Soc., Dalton Trans. 1978, 222
- ⁷⁾ R. P. Planalp, H. Vahrenkamp, Organometallics 6 (1987) 492.

- ⁸⁾ R. Shojaie, J. Atwood, Inorg. Chem. 26 (1987) 2199.
- ⁹⁾ E. Roland, H. Vahrenkamp, Chem. Ber. 117 (1984) 1039.
- ¹⁰⁾ T. Albiez, H. Vahrenkamp, Angew. Chem. 99 (1987) 561; Angew. Chem. Int. Ed. Engl. **26** (1987) 572.
- ¹¹⁾ Hier und im folgenden wird die Formelschreibweise der Cluster vereinfachend so gewählt, d. h. die delokalisierte und fluktuie-rende Natur der Moleküle so berücksischtigt, daß auf eine Zuordnung der Elektronen des μ_3 -Vierelektronenliganden zu den einzelnen Metallatomen und auf eine Lokalisierung der z.T. vorhandenen CO-Brücken verzichtet wird.
- ¹²⁾ B. T. Huie, C. B. Knobler, H. D. Kaesz, J. Am. Chem. Soc. 100 (1978) 3059.
- ¹³⁾ C. G. Cooke, M. J. Mays, J. Organomet. Chem. 74 (1974) 449.
- ¹⁴⁾ T. Albiez, W. Bernhardt, C. v. Schnering, E. Roland, H. Bantel, H. Vahrenkamp, Chem. Ber. 120 (1987) 141.
- ¹⁵⁾ E. Roland, W. Bernhardt, H. Vahrenkamp, Chem. Ber. 118 (1985) 2858.
- ¹⁶⁾ H. Günther, NMR-Spektroskopie, 2. Aufl., S. 229, G. Thieme, Stuttgart 1983.
- ¹⁷⁾ D. L. Stevenson, C. H. Wei, L. F. Dahl, J. Am. Chem. Soc. 93 (1971) 6027.
- ¹⁸⁾ R. D. Adams, J. E. Babin, M. Tasi, *Organometallics*, im Druck.
 ¹⁹⁾ M. D. Brice, B. R. Penfold, W. T. Robinson, S. R. Taylor, *Inorg.* Chem. 9 (1970) 362; H. Beurich, H. Vahrenkamp, Chem. Ber. 114 (1981) 2542.
- ²⁰⁾ F. Richter, H. Vahrenkamp, Chem. Ber. 115 (1982) 3243.
- ²¹⁾ R. G. Ball, F. Edelmann, G. Y. Kiehl, J. Taktas, R. Drews, Organometallics 5 (1986) 829. ²²⁾ H. Vahrenkamp. Comments on Inorg. Chem. 4 (1985) 253.
- ²³⁾ Vgl. J. F. Halet, J. Y. Saillard, R. Lissilour, M. J. McGlinchey, G. Jaouen, Inorg. Chem. 24 (1985) 218.
- ²⁴⁾ S. Aime, L. Milone, D. Osella, Á. Tripicchio, A. M. Manotti Lanfredi, Inorg. Chem. 21 (1982) 501.
- ²⁵⁾ W. Deck, M. Schwarz, H. Vahrenkamp, Chem. Ber. 120 (1987) 1515.
- ²⁶⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterle-gungsnummer CSD 52798, der Autoren und des Zeitschriftenzitats angefordert werden.

[366/87]